带有半轴上多点边界值问题的高频常微分方程常态系统的平均化

IF 0.5 Q3 MATHEMATICS
V. B. Levenshtam
{"title":"带有半轴上多点边界值问题的高频常微分方程常态系统的平均化","authors":"V. B. Levenshtam","doi":"10.3103/s1066369x2470018x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A multipoint boundary value problem for a nonlinear normal system of ordinary differential equations with a rapidly time-oscillating right-hand side is considered on a positive time semiaxis. For this problem, which depends on a large parameter (high oscillation frequency), a limiting (averaged) multipoint boundary value problem is constructed and a limiting transition in the Hölder space of bounded vector functions defined on the considered semiaxis is justified. Thus, for normal systems of differential equations in the case of a multipoint boundary value problem, the Krylov–Bogolyubov averaging method on the semiaxis is justified.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"12 7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging of a Normal System of Ordinary Differential Equations of High Frequency with a Multipoint Boundary Value Problem on a Semiaxis\",\"authors\":\"V. B. Levenshtam\",\"doi\":\"10.3103/s1066369x2470018x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A multipoint boundary value problem for a nonlinear normal system of ordinary differential equations with a rapidly time-oscillating right-hand side is considered on a positive time semiaxis. For this problem, which depends on a large parameter (high oscillation frequency), a limiting (averaged) multipoint boundary value problem is constructed and a limiting transition in the Hölder space of bounded vector functions defined on the considered semiaxis is justified. Thus, for normal systems of differential equations in the case of a multipoint boundary value problem, the Krylov–Bogolyubov averaging method on the semiaxis is justified.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"12 7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x2470018x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x2470018x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在正时间半轴上考虑了具有快速时间振荡右边的非线性正态常微分方程系统的多点边界值问题。对于这个依赖于一个大参数(高振荡频率)的问题,构造了一个极限(平均)多点边界值问题,并证明了在所考虑的半轴上定义的有界向量函数的赫尔德空间中的极限转换。因此,对于正常微分方程系统的多点边界值问题,半轴上的 Krylov-Bogolyubov 平均法是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Averaging of a Normal System of Ordinary Differential Equations of High Frequency with a Multipoint Boundary Value Problem on a Semiaxis

Abstract

A multipoint boundary value problem for a nonlinear normal system of ordinary differential equations with a rapidly time-oscillating right-hand side is considered on a positive time semiaxis. For this problem, which depends on a large parameter (high oscillation frequency), a limiting (averaged) multipoint boundary value problem is constructed and a limiting transition in the Hölder space of bounded vector functions defined on the considered semiaxis is justified. Thus, for normal systems of differential equations in the case of a multipoint boundary value problem, the Krylov–Bogolyubov averaging method on the semiaxis is justified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信