{"title":"两个独立变量情况下半线性双曲方程考希问题的经典解法","authors":"V. I. Korzyuk, J. V. Rudzko","doi":"10.3103/s1066369x24700178","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In the upper half-plane, we consider a semilinear hyperbolic partial differential equation of order higher than two. The operator in the equation is a composition of first-order differential operators. The equation is accompanied with Cauchy conditions. The solution is constructed in an implicit analytical form as a solution to some integral equation. The local solvability of this euqation is proved by the Banach fixed point theorem and/or the Schauder fixed point theorem. The global solvability of this equation is proved by the Leray–Schauder fixed point theorem. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"194 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical Solution to the Cauchy Problem for a Semilinear Hyperbolic Equation in the Case of Two Independent Variables\",\"authors\":\"V. I. Korzyuk, J. V. Rudzko\",\"doi\":\"10.3103/s1066369x24700178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In the upper half-plane, we consider a semilinear hyperbolic partial differential equation of order higher than two. The operator in the equation is a composition of first-order differential operators. The equation is accompanied with Cauchy conditions. The solution is constructed in an implicit analytical form as a solution to some integral equation. The local solvability of this euqation is proved by the Banach fixed point theorem and/or the Schauder fixed point theorem. The global solvability of this equation is proved by the Leray–Schauder fixed point theorem. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classical Solution to the Cauchy Problem for a Semilinear Hyperbolic Equation in the Case of Two Independent Variables
Abstract
In the upper half-plane, we consider a semilinear hyperbolic partial differential equation of order higher than two. The operator in the equation is a composition of first-order differential operators. The equation is accompanied with Cauchy conditions. The solution is constructed in an implicit analytical form as a solution to some integral equation. The local solvability of this euqation is proved by the Banach fixed point theorem and/or the Schauder fixed point theorem. The global solvability of this equation is proved by the Leray–Schauder fixed point theorem. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.