关于乘法系统和广义衍生数列的可积分性

IF 0.5 Q3 MATHEMATICS
N. Yu. Agafonova, S. S. Volosivets
{"title":"关于乘法系统和广义衍生数列的可积分性","authors":"N. Yu. Agafonova, S. S. Volosivets","doi":"10.3103/s1066369x24700142","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We give some necessary and sufficient conditiosn for the convergence of generalized derivatives of sums of series with respect to multiplicative systems and the corresponding Fourier series. These conditions are counterparts of trigonometric results of S. Sheng, W.O. Bray, and Č.V. Stanojević and extend some results of F. Móricz proved for Walsh–Fourier series.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"30 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrability of Series with Respect to Multiplicative Systems and Generalized Derivatives\",\"authors\":\"N. Yu. Agafonova, S. S. Volosivets\",\"doi\":\"10.3103/s1066369x24700142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We give some necessary and sufficient conditiosn for the convergence of generalized derivatives of sums of series with respect to multiplicative systems and the corresponding Fourier series. These conditions are counterparts of trigonometric results of S. Sheng, W.O. Bray, and Č.V. Stanojević and extend some results of F. Móricz proved for Walsh–Fourier series.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们给出了关于乘法系统和相应傅里叶级数的广义导数级数和收敛的一些必要条件和充分条件。这些条件与 S. Sheng、W.O. Bray 和 Č.V. Stanojević 的三角函数结果相对应,并扩展了 F. Móricz 为沃尔什-傅里叶级数证明的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrability of Series with Respect to Multiplicative Systems and Generalized Derivatives

Abstract

We give some necessary and sufficient conditiosn for the convergence of generalized derivatives of sums of series with respect to multiplicative systems and the corresponding Fourier series. These conditions are counterparts of trigonometric results of S. Sheng, W.O. Bray, and Č.V. Stanojević and extend some results of F. Móricz proved for Walsh–Fourier series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信