Liuyan Li, Shuqin Ding, Weibiao Wang, Lingling Yang, Gidion Wilson, Yuping Sa, Yue Zhang, Jianyu Chen and Xueqin Ma
{"title":"血清代谢组学揭示强直性脊柱炎的代谢特征和潜在生物标记物","authors":"Liuyan Li, Shuqin Ding, Weibiao Wang, Lingling Yang, Gidion Wilson, Yuping Sa, Yue Zhang, Jianyu Chen and Xueqin Ma","doi":"10.1039/D4MO00076E","DOIUrl":null,"url":null,"abstract":"<p >Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease that significantly impairs physical function in young individuals. However, the identification of radiographic changes in AS is frequently delayed, and the diagnostic efficacy of biomarkers like HLA-B27 remains moderately effective, with unsatisfactory sensitivity and specificity. In contrast to existing literature, our current experiment utilized a larger sample size and employed both untargeted and targeted UHPLC-QTOF-MS/MS based metabolomics to identify the metabolite profile and potential biomarkers of AS. The results indicated a notable divergence between the two groups, and a total of 170 different metabolites were identified, which were associated with the 6 primary metabolic pathways exhibiting a correlation with AS. Among these, 26 metabolites exhibited high sensitivity and specificity with area under curve (AUC) values greater than 0.8. Subsequent targeted quantitative analysis discovered 3 metabolites, namely 3-amino-2-piperidone, hypoxanthine and octadecylamine, exhibiting excellent distinguishing ability based on the results of the ROC curve and the Random Forest model, thus qualifying as potential biomarkers for AS. Summarily, our untargeted and targeted metabolomics investigation offers novel and precise insights into potential biomarkers for AS, potentially enhancing diagnostic capabilities and furthering the comprehension of the condition's pathophysiology.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 8","pages":" 505-516"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serum metabolomics reveals the metabolic profile and potential biomarkers of ankylosing spondylitis†\",\"authors\":\"Liuyan Li, Shuqin Ding, Weibiao Wang, Lingling Yang, Gidion Wilson, Yuping Sa, Yue Zhang, Jianyu Chen and Xueqin Ma\",\"doi\":\"10.1039/D4MO00076E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease that significantly impairs physical function in young individuals. However, the identification of radiographic changes in AS is frequently delayed, and the diagnostic efficacy of biomarkers like HLA-B27 remains moderately effective, with unsatisfactory sensitivity and specificity. In contrast to existing literature, our current experiment utilized a larger sample size and employed both untargeted and targeted UHPLC-QTOF-MS/MS based metabolomics to identify the metabolite profile and potential biomarkers of AS. The results indicated a notable divergence between the two groups, and a total of 170 different metabolites were identified, which were associated with the 6 primary metabolic pathways exhibiting a correlation with AS. Among these, 26 metabolites exhibited high sensitivity and specificity with area under curve (AUC) values greater than 0.8. Subsequent targeted quantitative analysis discovered 3 metabolites, namely 3-amino-2-piperidone, hypoxanthine and octadecylamine, exhibiting excellent distinguishing ability based on the results of the ROC curve and the Random Forest model, thus qualifying as potential biomarkers for AS. Summarily, our untargeted and targeted metabolomics investigation offers novel and precise insights into potential biomarkers for AS, potentially enhancing diagnostic capabilities and furthering the comprehension of the condition's pathophysiology.</p>\",\"PeriodicalId\":19065,\"journal\":{\"name\":\"Molecular omics\",\"volume\":\" 8\",\"pages\":\" 505-516\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular omics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d4mo00076e\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d4mo00076e","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Serum metabolomics reveals the metabolic profile and potential biomarkers of ankylosing spondylitis†
Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease that significantly impairs physical function in young individuals. However, the identification of radiographic changes in AS is frequently delayed, and the diagnostic efficacy of biomarkers like HLA-B27 remains moderately effective, with unsatisfactory sensitivity and specificity. In contrast to existing literature, our current experiment utilized a larger sample size and employed both untargeted and targeted UHPLC-QTOF-MS/MS based metabolomics to identify the metabolite profile and potential biomarkers of AS. The results indicated a notable divergence between the two groups, and a total of 170 different metabolites were identified, which were associated with the 6 primary metabolic pathways exhibiting a correlation with AS. Among these, 26 metabolites exhibited high sensitivity and specificity with area under curve (AUC) values greater than 0.8. Subsequent targeted quantitative analysis discovered 3 metabolites, namely 3-amino-2-piperidone, hypoxanthine and octadecylamine, exhibiting excellent distinguishing ability based on the results of the ROC curve and the Random Forest model, thus qualifying as potential biomarkers for AS. Summarily, our untargeted and targeted metabolomics investigation offers novel and precise insights into potential biomarkers for AS, potentially enhancing diagnostic capabilities and furthering the comprehension of the condition's pathophysiology.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.