{"title":"论因果集合论的成长宇宙--一种秩序型方法","authors":"Tomasz Placek, Leszek Wroński","doi":"10.1007/s10701-024-00767-5","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate a model of becoming—classical sequential growth (CSG)—that has been proposed within the framework of causal sets (causets), with the latter defined as order types of certain partial orderings. To investigate how causets grow, we introduce special sequences of causets, which we call “csg-paths”. We prove a number of results concerning relations between csg-paths and causets. These results paint a highly non-trivial picture of csg-paths. There are uncountably many csg-paths, all of them sharing the same beginning, after which they branch. Every infinite csg-path achieves in the limit an infinite causet, and vice versa, every infinite causet is achieved in the limit by an infinite csg-path. However, coalescing csg-paths, i.e., ones that achieve the same causet even after forking off at some point, are ubiquitous.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00767-5.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Growing Universe of Causal Set Theory—An Order-Type Approach\",\"authors\":\"Tomasz Placek, Leszek Wroński\",\"doi\":\"10.1007/s10701-024-00767-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate a model of becoming—classical sequential growth (CSG)—that has been proposed within the framework of causal sets (causets), with the latter defined as order types of certain partial orderings. To investigate how causets grow, we introduce special sequences of causets, which we call “csg-paths”. We prove a number of results concerning relations between csg-paths and causets. These results paint a highly non-trivial picture of csg-paths. There are uncountably many csg-paths, all of them sharing the same beginning, after which they branch. Every infinite csg-path achieves in the limit an infinite causet, and vice versa, every infinite causet is achieved in the limit by an infinite csg-path. However, coalescing csg-paths, i.e., ones that achieve the same causet even after forking off at some point, are ubiquitous.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"54 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10701-024-00767-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-024-00767-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-024-00767-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
On the Growing Universe of Causal Set Theory—An Order-Type Approach
We investigate a model of becoming—classical sequential growth (CSG)—that has been proposed within the framework of causal sets (causets), with the latter defined as order types of certain partial orderings. To investigate how causets grow, we introduce special sequences of causets, which we call “csg-paths”. We prove a number of results concerning relations between csg-paths and causets. These results paint a highly non-trivial picture of csg-paths. There are uncountably many csg-paths, all of them sharing the same beginning, after which they branch. Every infinite csg-path achieves in the limit an infinite causet, and vice versa, every infinite causet is achieved in the limit by an infinite csg-path. However, coalescing csg-paths, i.e., ones that achieve the same causet even after forking off at some point, are ubiquitous.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.