{"title":"应用于分布式电驱动车辆的转向稳定性控制策略:考虑多目标需求的能量优化","authors":"Yang Zhao, Xiangwei Wang","doi":"10.1007/s12239-024-00119-2","DOIUrl":null,"url":null,"abstract":"<p>This article presents a cooperative controller that is specifically designed to enhance the stability of a distributed-drive vehicle during steering. The controller focuses on improving lateral stability during steering and achieving optimal torque allocation to meet numerous objectives. The article proposes a novel approach to improve the performance of the sliding mode controller for transverse stability control during steering. This is achieved by designing a fractional-order non-singular fast terminal sliding mode surface function, a fractional-order double-power exponential convergence law, and introducing a weighted integration term. Furthermore, the vehicle’s torque was fine-tuned by employing an ant colony optimization (ACO) technique within the acceptable range defined by the lateral and longitudinal control requirements. To prevent the ACO algorithm from being stuck in local optima, a pseudo-random rule was implemented based on the original state transfer probability. This rule helps accelerate the convergence of the algorithm. Additionally, an elite approach and a dynamic change strategy for pheromone concentration were devised. Ultimately, the performance of the co-controller that was built is evaluated by simulation experiments conducted under both accelerated and decelerated driving situations. The test findings indicate that the technique effectively improves the lateral stability, tracking control, and energy economy of electric cars, with promising potential for practical use.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"91 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steering Stability Control Strategy Applied to Distributed Electric Drive Vehicles: Energy Optimization Considering Multi-objective Demands\",\"authors\":\"Yang Zhao, Xiangwei Wang\",\"doi\":\"10.1007/s12239-024-00119-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents a cooperative controller that is specifically designed to enhance the stability of a distributed-drive vehicle during steering. The controller focuses on improving lateral stability during steering and achieving optimal torque allocation to meet numerous objectives. The article proposes a novel approach to improve the performance of the sliding mode controller for transverse stability control during steering. This is achieved by designing a fractional-order non-singular fast terminal sliding mode surface function, a fractional-order double-power exponential convergence law, and introducing a weighted integration term. Furthermore, the vehicle’s torque was fine-tuned by employing an ant colony optimization (ACO) technique within the acceptable range defined by the lateral and longitudinal control requirements. To prevent the ACO algorithm from being stuck in local optima, a pseudo-random rule was implemented based on the original state transfer probability. This rule helps accelerate the convergence of the algorithm. Additionally, an elite approach and a dynamic change strategy for pheromone concentration were devised. Ultimately, the performance of the co-controller that was built is evaluated by simulation experiments conducted under both accelerated and decelerated driving situations. The test findings indicate that the technique effectively improves the lateral stability, tracking control, and energy economy of electric cars, with promising potential for practical use.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00119-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00119-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Steering Stability Control Strategy Applied to Distributed Electric Drive Vehicles: Energy Optimization Considering Multi-objective Demands
This article presents a cooperative controller that is specifically designed to enhance the stability of a distributed-drive vehicle during steering. The controller focuses on improving lateral stability during steering and achieving optimal torque allocation to meet numerous objectives. The article proposes a novel approach to improve the performance of the sliding mode controller for transverse stability control during steering. This is achieved by designing a fractional-order non-singular fast terminal sliding mode surface function, a fractional-order double-power exponential convergence law, and introducing a weighted integration term. Furthermore, the vehicle’s torque was fine-tuned by employing an ant colony optimization (ACO) technique within the acceptable range defined by the lateral and longitudinal control requirements. To prevent the ACO algorithm from being stuck in local optima, a pseudo-random rule was implemented based on the original state transfer probability. This rule helps accelerate the convergence of the algorithm. Additionally, an elite approach and a dynamic change strategy for pheromone concentration were devised. Ultimately, the performance of the co-controller that was built is evaluated by simulation experiments conducted under both accelerated and decelerated driving situations. The test findings indicate that the technique effectively improves the lateral stability, tracking control, and energy economy of electric cars, with promising potential for practical use.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.