{"title":"基于单一材料和多种材料的轻质车身设计","authors":"Çağatay Koç, Paşa Yayla","doi":"10.1007/s12239-024-00114-7","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of design parameter adjustments on the vehicle’s strength and body weight. To generate a lightweight design for a vehicle body, the bus body is examined and optimised. The direct optimisation process is used to obtain optimised vehicle bodies by changing material, component’s wall thickness and material diversity. The entire body of the vehicle is considered, but local optimisation is prioritised in this work because some parts are affected more than others under different loading conditions. Three different loading conditions are decided by considering normal loads on the vehicle bodies under normal driving conditions. The vehicle’s body structure weight is minimised while stresses and deformations are created in the boundaries. Three different materials are initially analysed and optimised. The multi-material vehicle body is designed after combining two materials with the best optimisation performance using optimisation rates. After obtaining the multi-material-based vehicle structure, its initial analysis and optimisation procedures are calculated as single-material-based vehicle structures. Finally, four different optimised vehicle body structures are obtained: three single-material based and one multi-material based. The effects of different loading conditions, and design parameters, such as component wall thickness, material type, and material diversity, are investigated, along with their advantages and disadvantages.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"2021 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single- and Multi-material-Based Design of Lightweight Vehicle Body\",\"authors\":\"Çağatay Koç, Paşa Yayla\",\"doi\":\"10.1007/s12239-024-00114-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the impact of design parameter adjustments on the vehicle’s strength and body weight. To generate a lightweight design for a vehicle body, the bus body is examined and optimised. The direct optimisation process is used to obtain optimised vehicle bodies by changing material, component’s wall thickness and material diversity. The entire body of the vehicle is considered, but local optimisation is prioritised in this work because some parts are affected more than others under different loading conditions. Three different loading conditions are decided by considering normal loads on the vehicle bodies under normal driving conditions. The vehicle’s body structure weight is minimised while stresses and deformations are created in the boundaries. Three different materials are initially analysed and optimised. The multi-material vehicle body is designed after combining two materials with the best optimisation performance using optimisation rates. After obtaining the multi-material-based vehicle structure, its initial analysis and optimisation procedures are calculated as single-material-based vehicle structures. Finally, four different optimised vehicle body structures are obtained: three single-material based and one multi-material based. The effects of different loading conditions, and design parameters, such as component wall thickness, material type, and material diversity, are investigated, along with their advantages and disadvantages.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"2021 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00114-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00114-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Single- and Multi-material-Based Design of Lightweight Vehicle Body
This study investigates the impact of design parameter adjustments on the vehicle’s strength and body weight. To generate a lightweight design for a vehicle body, the bus body is examined and optimised. The direct optimisation process is used to obtain optimised vehicle bodies by changing material, component’s wall thickness and material diversity. The entire body of the vehicle is considered, but local optimisation is prioritised in this work because some parts are affected more than others under different loading conditions. Three different loading conditions are decided by considering normal loads on the vehicle bodies under normal driving conditions. The vehicle’s body structure weight is minimised while stresses and deformations are created in the boundaries. Three different materials are initially analysed and optimised. The multi-material vehicle body is designed after combining two materials with the best optimisation performance using optimisation rates. After obtaining the multi-material-based vehicle structure, its initial analysis and optimisation procedures are calculated as single-material-based vehicle structures. Finally, four different optimised vehicle body structures are obtained: three single-material based and one multi-material based. The effects of different loading conditions, and design parameters, such as component wall thickness, material type, and material diversity, are investigated, along with their advantages and disadvantages.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.