存在科里奥利效应和表面张力的不平整底部的格林-纳格迪模型的良好拟合度

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marwa Berjawi, Toufic El Arwadi, Samer Israwi, Raafat Talhouk
{"title":"存在科里奥利效应和表面张力的不平整底部的格林-纳格迪模型的良好拟合度","authors":"Marwa Berjawi,&nbsp;Toufic El Arwadi,&nbsp;Samer Israwi,&nbsp;Raafat Talhouk","doi":"10.1111/sapm.12725","DOIUrl":null,"url":null,"abstract":"<p>The objective of this work is to derive and analyze a Green–Naghdi model with Coriolis effect and surface tension in nonflat bottom geometry. Gui et al. derive a Green–Naghdi-type model in flat bottom geometry under the gravity and Coriolis effect. Chen et al. proved the existence and uniqueness of solution in Sobolev space under a condition depending on the initial velocity and the Coriolis effect. In this paper, we provide a rigorous derivation of Green–Naghdi model under the influence of the two mentioned effects, with nonflat bottom. After that, the existence and construction of solutions for the derived model will be proved under two alternative conditions: the first one is the same condition as in Chen et al. and Berjawi et al. and the second one concerns only the Coriolis coefficient <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> that supposed to be only of order <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msqrt>\n <mi>μ</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n <annotation>$O({\\sqrt {\\mu }})$</annotation>\n </semantics></math>. This existence and uniqueness result ameliorate the result of Chen et al. and Berjawi et al. in the sense that no condition on the velocity is needed. We also prove the continuity of the associated flow map.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness of the Green–Naghdi model for an uneven bottom in presence of the Coriolis effect and surface tension\",\"authors\":\"Marwa Berjawi,&nbsp;Toufic El Arwadi,&nbsp;Samer Israwi,&nbsp;Raafat Talhouk\",\"doi\":\"10.1111/sapm.12725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of this work is to derive and analyze a Green–Naghdi model with Coriolis effect and surface tension in nonflat bottom geometry. Gui et al. derive a Green–Naghdi-type model in flat bottom geometry under the gravity and Coriolis effect. Chen et al. proved the existence and uniqueness of solution in Sobolev space under a condition depending on the initial velocity and the Coriolis effect. In this paper, we provide a rigorous derivation of Green–Naghdi model under the influence of the two mentioned effects, with nonflat bottom. After that, the existence and construction of solutions for the derived model will be proved under two alternative conditions: the first one is the same condition as in Chen et al. and Berjawi et al. and the second one concerns only the Coriolis coefficient <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> that supposed to be only of order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msqrt>\\n <mi>μ</mi>\\n </msqrt>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$O({\\\\sqrt {\\\\mu }})$</annotation>\\n </semantics></math>. This existence and uniqueness result ameliorate the result of Chen et al. and Berjawi et al. in the sense that no condition on the velocity is needed. We also prove the continuity of the associated flow map.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是推导和分析非平底几何形状下具有科里奥利效应和表面张力的格林-纳格迪模型。Gui 等人推导了在重力和科里奥利效应作用下的平底几何中的格林-纳格迪模型。Chen 等人证明了在 Sobolev 空间中,在取决于初速度和科里奥利效应的条件下,解的存在性和唯一性。在本文中,我们对上述两种效应影响下的非平底 Green-Naghdi 模型进行了严格推导。之后,我们将在两个可选条件下证明推导模型解的存在性和构造:第一个条件与 Chen 等人和 Berjawi 等人的研究相同,第二个条件只涉及科里奥利系数,即科里奥利系数的阶数为 。这一存在性和唯一性结果改进了 Chen 等人和 Berjawi 等人的结果,即不需要速度条件。我们还证明了相关流图的连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of the Green–Naghdi model for an uneven bottom in presence of the Coriolis effect and surface tension

The objective of this work is to derive and analyze a Green–Naghdi model with Coriolis effect and surface tension in nonflat bottom geometry. Gui et al. derive a Green–Naghdi-type model in flat bottom geometry under the gravity and Coriolis effect. Chen et al. proved the existence and uniqueness of solution in Sobolev space under a condition depending on the initial velocity and the Coriolis effect. In this paper, we provide a rigorous derivation of Green–Naghdi model under the influence of the two mentioned effects, with nonflat bottom. After that, the existence and construction of solutions for the derived model will be proved under two alternative conditions: the first one is the same condition as in Chen et al. and Berjawi et al. and the second one concerns only the Coriolis coefficient Ω $\Omega$ that supposed to be only of order O ( μ ) $O({\sqrt {\mu }})$ . This existence and uniqueness result ameliorate the result of Chen et al. and Berjawi et al. in the sense that no condition on the velocity is needed. We also prove the continuity of the associated flow map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信