Pro-nilpotently extended dgca-s 和 SH Lie-Rinehart 对

Damjan Pištalo
{"title":"Pro-nilpotently extended dgca-s 和 SH Lie-Rinehart 对","authors":"Damjan Pištalo","doi":"arxiv-2406.10883","DOIUrl":null,"url":null,"abstract":"Category of pro-nilpotently extended differential graded commutative algebras\nis introduced. Chevalley-Eilenberg construction provides an equivalence between\nits certain full subcategory and the opposite to the full subcategory of strong\nhomotopy Lie Rinehart pairs with strong homotopy morphisms, consisting of pairs\n$(A,M)$ where $M$ is flat as a graded $A$-module. It is shown that pairs\n$(A,M)$, where $A$ is a semi-free dgca and $M$ a cell complex in $\\op{Mod}(A)$,\nform a category of fibrant objects by proving that their Chevalley-Eilenberg\ncomplexes form a category of cofibrant objects.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"186 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pro-nilpotently extended dgca-s and SH Lie-Rinehart pairs\",\"authors\":\"Damjan Pištalo\",\"doi\":\"arxiv-2406.10883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Category of pro-nilpotently extended differential graded commutative algebras\\nis introduced. Chevalley-Eilenberg construction provides an equivalence between\\nits certain full subcategory and the opposite to the full subcategory of strong\\nhomotopy Lie Rinehart pairs with strong homotopy morphisms, consisting of pairs\\n$(A,M)$ where $M$ is flat as a graded $A$-module. It is shown that pairs\\n$(A,M)$, where $A$ is a semi-free dgca and $M$ a cell complex in $\\\\op{Mod}(A)$,\\nform a category of fibrant objects by proving that their Chevalley-Eilenberg\\ncomplexes form a category of cofibrant objects.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"186 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.10883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了原无势扩展微分级数交换代数范畴。切瓦利-艾伦伯格构造提供了它的某个全子类与强同调李-芮恩哈特对的全子类之间的等价性,强同调李-芮恩哈特对由对$(A,M)$组成,其中$M$是平的分级$A$模块。通过证明它们的切瓦利-艾伦伯格复数构成了一个共纤对象范畴,可以证明对$(A,M)$(其中$A$是一个半自由的dgca,$M$是$\op{Mod}(A)$中的一个单元复数)构成了一个纤对象范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pro-nilpotently extended dgca-s and SH Lie-Rinehart pairs
Category of pro-nilpotently extended differential graded commutative algebras is introduced. Chevalley-Eilenberg construction provides an equivalence between its certain full subcategory and the opposite to the full subcategory of strong homotopy Lie Rinehart pairs with strong homotopy morphisms, consisting of pairs $(A,M)$ where $M$ is flat as a graded $A$-module. It is shown that pairs $(A,M)$, where $A$ is a semi-free dgca and $M$ a cell complex in $\op{Mod}(A)$, form a category of fibrant objects by proving that their Chevalley-Eilenberg complexes form a category of cofibrant objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信