D-GRIL:具有双参数持久性的端到端拓扑学习

Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey
{"title":"D-GRIL:具有双参数持久性的端到端拓扑学习","authors":"Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey","doi":"arxiv-2406.07100","DOIUrl":null,"url":null,"abstract":"End-to-end topological learning using 1-parameter persistence is well-known.\nWe show that the framework can be enhanced using 2-parameter persistence by\nadopting a recently introduced 2-parameter persistence based vectorization\ntechnique called GRIL. We establish a theoretical foundation of differentiating\nGRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration\nfunction on standard benchmark graph datasets. Further, we exhibit that this\nframework can be applied in the context of bio-activity prediction in drug\ndiscovery.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-GRIL: End-to-End Topological Learning with 2-parameter Persistence\",\"authors\":\"Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey\",\"doi\":\"arxiv-2406.07100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end topological learning using 1-parameter persistence is well-known.\\nWe show that the framework can be enhanced using 2-parameter persistence by\\nadopting a recently introduced 2-parameter persistence based vectorization\\ntechnique called GRIL. We establish a theoretical foundation of differentiating\\nGRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration\\nfunction on standard benchmark graph datasets. Further, we exhibit that this\\nframework can be applied in the context of bio-activity prediction in drug\\ndiscovery.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.07100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究表明,通过采用最近推出的基于 2 参数持久性的矢量化技术 GRIL,可以利用 2 参数持久性来增强端到端拓扑学习框架。我们建立了区分 GRIL 和 D-GRIL 的理论基础。我们证明,D-GRIL 可用于在标准基准图数据集上学习双分层函数。此外,我们还展示了这一框架可以应用于药物发现中的生物活性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D-GRIL: End-to-End Topological Learning with 2-parameter Persistence
End-to-end topological learning using 1-parameter persistence is well-known. We show that the framework can be enhanced using 2-parameter persistence by adopting a recently introduced 2-parameter persistence based vectorization technique called GRIL. We establish a theoretical foundation of differentiating GRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration function on standard benchmark graph datasets. Further, we exhibit that this framework can be applied in the context of bio-activity prediction in drug discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信