Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey
{"title":"D-GRIL:具有双参数持久性的端到端拓扑学习","authors":"Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey","doi":"arxiv-2406.07100","DOIUrl":null,"url":null,"abstract":"End-to-end topological learning using 1-parameter persistence is well-known.\nWe show that the framework can be enhanced using 2-parameter persistence by\nadopting a recently introduced 2-parameter persistence based vectorization\ntechnique called GRIL. We establish a theoretical foundation of differentiating\nGRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration\nfunction on standard benchmark graph datasets. Further, we exhibit that this\nframework can be applied in the context of bio-activity prediction in drug\ndiscovery.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-GRIL: End-to-End Topological Learning with 2-parameter Persistence\",\"authors\":\"Soham Mukherjee, Shreyas N. Samaga, Cheng Xin, Steve Oudot, Tamal K. Dey\",\"doi\":\"arxiv-2406.07100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end topological learning using 1-parameter persistence is well-known.\\nWe show that the framework can be enhanced using 2-parameter persistence by\\nadopting a recently introduced 2-parameter persistence based vectorization\\ntechnique called GRIL. We establish a theoretical foundation of differentiating\\nGRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration\\nfunction on standard benchmark graph datasets. Further, we exhibit that this\\nframework can be applied in the context of bio-activity prediction in drug\\ndiscovery.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.07100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
D-GRIL: End-to-End Topological Learning with 2-parameter Persistence
End-to-end topological learning using 1-parameter persistence is well-known.
We show that the framework can be enhanced using 2-parameter persistence by
adopting a recently introduced 2-parameter persistence based vectorization
technique called GRIL. We establish a theoretical foundation of differentiating
GRIL producing D-GRIL. We show that D-GRIL can be used to learn a bifiltration
function on standard benchmark graph datasets. Further, we exhibit that this
framework can be applied in the context of bio-activity prediction in drug
discovery.