{"title":"等变稳定同调理论中的周期现象","authors":"Mark Behrens, Jack Carlisle","doi":"arxiv-2406.19352","DOIUrl":null,"url":null,"abstract":"Building off of many recent advances in the subject by many different\nresearchers, we describe a picture of A-equivariant chromatic homotopy theory\nwhich mirrors the now classical non-equivariant picture of Morava,\nMiller-Ravenel-Wilson, and Devinatz-Hopkins-Smith, where A is a finite abelian\np-group. Specifically, we review the structure of the Balmer spectrum of the\ncategory of A-spectra, and the work of Hausmann-Meier connecting this to MU_A\nand equivariant formal group laws. Generalizing work of\nBhattacharya-Guillou-Li, we introduce equivariant analogs of v_n-self maps, and\ngeneralizing work of Carrick and Balderrama, we introduce equivariant analogs\nof the chromatic tower, and give equivariant analogs of the smash product and\nchromatic convergence theorems. The equivariant monochromatic theory is also\ndiscussed. We explore computational examples of this theory in the case of A =\nC_2, where we connect equivariant chromatic theory with redshift phenomena in\nMahowald invariants.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic phenomena in equivariant stable homotopy theory\",\"authors\":\"Mark Behrens, Jack Carlisle\",\"doi\":\"arxiv-2406.19352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building off of many recent advances in the subject by many different\\nresearchers, we describe a picture of A-equivariant chromatic homotopy theory\\nwhich mirrors the now classical non-equivariant picture of Morava,\\nMiller-Ravenel-Wilson, and Devinatz-Hopkins-Smith, where A is a finite abelian\\np-group. Specifically, we review the structure of the Balmer spectrum of the\\ncategory of A-spectra, and the work of Hausmann-Meier connecting this to MU_A\\nand equivariant formal group laws. Generalizing work of\\nBhattacharya-Guillou-Li, we introduce equivariant analogs of v_n-self maps, and\\ngeneralizing work of Carrick and Balderrama, we introduce equivariant analogs\\nof the chromatic tower, and give equivariant analogs of the smash product and\\nchromatic convergence theorems. The equivariant monochromatic theory is also\\ndiscussed. We explore computational examples of this theory in the case of A =\\nC_2, where we connect equivariant chromatic theory with redshift phenomena in\\nMahowald invariants.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基于许多不同研究者在这一主题上的最新进展,我们描述了 A-等变色同调理论的图景,它反映了莫拉瓦、米勒-拉文尔-威尔逊和德维纳茨-霍普金斯-史密斯现在经典的非等变图景,其中 A 是一个有限无性 p 群。具体地说,我们回顾了A谱范畴的巴尔默谱结构,以及豪斯曼-迈尔将其与MU_A和等变形式群律联系起来的工作。根据巴塔查里亚-吉卢-李的工作,我们引入了 v_n 自映射的等变类比;根据卡里克和巴尔德拉马的工作,我们引入了色度塔的等变类比,并给出了粉碎积和色度收敛定理的等变类比。我们还讨论了等变单色理论。我们探讨了该理论在 A =C_2 情况下的计算实例,并将等变色度理论与马霍瓦尔德不变式中的红移现象联系起来。
Periodic phenomena in equivariant stable homotopy theory
Building off of many recent advances in the subject by many different
researchers, we describe a picture of A-equivariant chromatic homotopy theory
which mirrors the now classical non-equivariant picture of Morava,
Miller-Ravenel-Wilson, and Devinatz-Hopkins-Smith, where A is a finite abelian
p-group. Specifically, we review the structure of the Balmer spectrum of the
category of A-spectra, and the work of Hausmann-Meier connecting this to MU_A
and equivariant formal group laws. Generalizing work of
Bhattacharya-Guillou-Li, we introduce equivariant analogs of v_n-self maps, and
generalizing work of Carrick and Balderrama, we introduce equivariant analogs
of the chromatic tower, and give equivariant analogs of the smash product and
chromatic convergence theorems. The equivariant monochromatic theory is also
discussed. We explore computational examples of this theory in the case of A =
C_2, where we connect equivariant chromatic theory with redshift phenomena in
Mahowald invariants.