通过合成光谱获得后裔光谱序列

Christian Carrick, Jack Morgan Davies, Sven van Nigtevecht
{"title":"通过合成光谱获得后裔光谱序列","authors":"Christian Carrick, Jack Morgan Davies, Sven van Nigtevecht","doi":"arxiv-2407.01507","DOIUrl":null,"url":null,"abstract":"The synthetic analogue functor $\\nu$ from spectra to synthetic spectra does\nnot preserve all limits. In this paper, we give a necessary and sufficient\ncriterion for $\\nu$ to preserve the global sections of a derived stack. Even\nwhen these conditions are not satisfied, our framework still yields synthetic\nspectra that implement the descent spectral sequence for the structure sheaf,\nthus placing descent spectral sequences on good footing in the\n$\\infty$-category of synthetic spectra. As an example, we introduce a new\n$\\mathrm{MU}$-synthetic spectrum $\\mathrm{Smf}$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Descent spectral sequences through synthetic spectra\",\"authors\":\"Christian Carrick, Jack Morgan Davies, Sven van Nigtevecht\",\"doi\":\"arxiv-2407.01507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthetic analogue functor $\\\\nu$ from spectra to synthetic spectra does\\nnot preserve all limits. In this paper, we give a necessary and sufficient\\ncriterion for $\\\\nu$ to preserve the global sections of a derived stack. Even\\nwhen these conditions are not satisfied, our framework still yields synthetic\\nspectra that implement the descent spectral sequence for the structure sheaf,\\nthus placing descent spectral sequences on good footing in the\\n$\\\\infty$-category of synthetic spectra. As an example, we introduce a new\\n$\\\\mathrm{MU}$-synthetic spectrum $\\\\mathrm{Smf}$.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从光谱到合成光谱的合成类似函数 $\nu$ 并不保留所有极限。在本文中,我们给出了$\nu$保留派生堆栈全局截面的必要条件和充分条件。即使不满足这些条件,我们的框架仍然可以得到实现结构 sheaf 的下降谱序列的合成谱,从而使下降谱序列在$\infty$-类合成谱中站稳脚跟。作为一个例子,我们引入了一个新的$\mathrm{MU}$合成谱$\mathrm{Smf}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Descent spectral sequences through synthetic spectra
The synthetic analogue functor $\nu$ from spectra to synthetic spectra does not preserve all limits. In this paper, we give a necessary and sufficient criterion for $\nu$ to preserve the global sections of a derived stack. Even when these conditions are not satisfied, our framework still yields synthetic spectra that implement the descent spectral sequence for the structure sheaf, thus placing descent spectral sequences on good footing in the $\infty$-category of synthetic spectra. As an example, we introduce a new $\mathrm{MU}$-synthetic spectrum $\mathrm{Smf}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信