用于质子交换膜电解器的活性和高耐久性支撑催化剂

EES catalysis Pub Date : 2024-06-21 DOI:10.1039/D4EY00026A
Debora Belami, Matthew Lindley, Umesh S. Jonnalagadda, Annie Mae Goncalves Bullock, Qianwenhao Fan, Wen Liu, Sarah J. Haigh, James Kwan, Yagya N. Regmi and Laurie A. King
{"title":"用于质子交换膜电解器的活性和高耐久性支撑催化剂","authors":"Debora Belami, Matthew Lindley, Umesh S. Jonnalagadda, Annie Mae Goncalves Bullock, Qianwenhao Fan, Wen Liu, Sarah J. Haigh, James Kwan, Yagya N. Regmi and Laurie A. King","doi":"10.1039/D4EY00026A","DOIUrl":null,"url":null,"abstract":"<p >The design and development of supported catalysts for the oxygen evolution reaction (OER) is a promising pathway to reducing iridium loading in proton exchange membrane water electrolysers. However, supported catalysts often suffer from poor activity and durability, particularly when deployed in membrane electrode assemblies. In this work, we deploy iridium coated hollow titanium dioxide particles as OER catalysts to achieve higher Ir mass activities than the leading commercial catalysts. Critically, we demonstrate state-of-the-art durabilities for supported iridium catalysts when compared against the previously reported values for analogous device architectures, operating conditions and accelerated stress test profiles. Through extensive materials characterisations alongside rotating disk electrode measurements, we investigate the role of conductivity, morphology, oxidation state and crystallinity on the OER electrochemical performance. Our work highlights a new supported catalyst design that unlocks high-performance OER activity and durability in commercially relevant testing configurations.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 5","pages":" 1139-1151"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00026a?page=search","citationCount":"0","resultStr":"{\"title\":\"Active and highly durable supported catalysts for proton exchange membrane electrolysers†\",\"authors\":\"Debora Belami, Matthew Lindley, Umesh S. Jonnalagadda, Annie Mae Goncalves Bullock, Qianwenhao Fan, Wen Liu, Sarah J. Haigh, James Kwan, Yagya N. Regmi and Laurie A. King\",\"doi\":\"10.1039/D4EY00026A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The design and development of supported catalysts for the oxygen evolution reaction (OER) is a promising pathway to reducing iridium loading in proton exchange membrane water electrolysers. However, supported catalysts often suffer from poor activity and durability, particularly when deployed in membrane electrode assemblies. In this work, we deploy iridium coated hollow titanium dioxide particles as OER catalysts to achieve higher Ir mass activities than the leading commercial catalysts. Critically, we demonstrate state-of-the-art durabilities for supported iridium catalysts when compared against the previously reported values for analogous device architectures, operating conditions and accelerated stress test profiles. Through extensive materials characterisations alongside rotating disk electrode measurements, we investigate the role of conductivity, morphology, oxidation state and crystallinity on the OER electrochemical performance. Our work highlights a new supported catalyst design that unlocks high-performance OER activity and durability in commercially relevant testing configurations.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 5\",\"pages\":\" 1139-1151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00026a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00026a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00026a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计和开发用于氧进化反应(OER)的支撑催化剂,是减少质子交换膜水电解槽中铱负载的一条可行途径。然而,支撑型催化剂往往存在活性和耐久性差的问题,尤其是在膜电极组件中使用时。在这项工作中,我们将涂有铱的中空二氧化钛颗粒用作 OER 催化剂,以获得比主要商用催化剂更高的 Ir 质量活性。重要的是,与之前报道的类似设备结构、操作条件和加速应力测试剖面的值相比,我们证明了支撑铱催化剂最先进的耐用性。通过广泛的材料特性分析和旋转盘电极测量,我们研究了电导率、形态、氧化态和结晶度对 OER 电化学性能的影响。我们的工作突出了一种新的支撑催化剂设计,它能在商业相关的测试配置中释放出高性能的 OER 活性和耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Active and highly durable supported catalysts for proton exchange membrane electrolysers†

Active and highly durable supported catalysts for proton exchange membrane electrolysers†

Active and highly durable supported catalysts for proton exchange membrane electrolysers†

The design and development of supported catalysts for the oxygen evolution reaction (OER) is a promising pathway to reducing iridium loading in proton exchange membrane water electrolysers. However, supported catalysts often suffer from poor activity and durability, particularly when deployed in membrane electrode assemblies. In this work, we deploy iridium coated hollow titanium dioxide particles as OER catalysts to achieve higher Ir mass activities than the leading commercial catalysts. Critically, we demonstrate state-of-the-art durabilities for supported iridium catalysts when compared against the previously reported values for analogous device architectures, operating conditions and accelerated stress test profiles. Through extensive materials characterisations alongside rotating disk electrode measurements, we investigate the role of conductivity, morphology, oxidation state and crystallinity on the OER electrochemical performance. Our work highlights a new supported catalyst design that unlocks high-performance OER activity and durability in commercially relevant testing configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信