Casey E. Beall, Emiliana Fabbri, Adam H. Clark, Vivian Meier, Nur Sena Yüzbasi, Thomas Graule, Sayaka Takahashi, Yuto Shirase, Makoto Uchida and Thomas J. Schmidt
{"title":"设计用于氧还原和进化反应的双功能过氧化物催化剂","authors":"Casey E. Beall, Emiliana Fabbri, Adam H. Clark, Vivian Meier, Nur Sena Yüzbasi, Thomas Graule, Sayaka Takahashi, Yuto Shirase, Makoto Uchida and Thomas J. Schmidt","doi":"10.1039/D4EY00084F","DOIUrl":null,"url":null,"abstract":"<p >The development of unified regenerative fuel cells (URFCs) necessitates an active and stable bifunctional oxygen electrocatalyst. The unique challenge of possessing high activity for both the oxygen reduction (ORR) and oxygen evolution (OER) reactions, while maintaining stability over a wide potential window impedes the design of bifunctional oxygen electrocatalysts. Herein, two design strategies are explored to optimize their performance. The first incorporates active sites for the ORR and OER, Mn and Co, into a single perovskite structure, which is achieved with the perovskites Ba<small><sub>0.5</sub></small>Sr<small><sub>0.5</sub></small>Co<small><sub>0.8</sub></small>Mn<small><sub>0.2</sub></small>O<small><sub>3−<em>δ</em></sub></small> (BSCM) and La<small><sub>0.5</sub></small>Ba<small><sub>0.25</sub></small>Sr<small><sub>0.25</sub></small>Co<small><sub>0.5</sub></small>Mn<small><sub>0.5</sub></small>O<small><sub>3−<em>δ</em></sub></small> (LBSCM). The second combines an active ORR perovskite catalyst (La<small><sub>0.4</sub></small>Sr<small><sub>0.6</sub></small>MnO<small><sub>3−<em>δ</em></sub></small> (LSM)) with an OER active perovskite catalyst (Ba<small><sub>0.5</sub></small>Sr<small><sub>0.5</sub></small>Co<small><sub>0.8</sub></small>Fe<small><sub>0.2</sub></small>O<small><sub>3−<em>δ</em></sub></small> (BSCF)) in a physical mixed composite (BSCF/LSM). The success of the two strategies is investigated by measuring the catalysts’ catalytic performance and response to alternating reducing and oxidizing potentials to mimic the dynamic conditions experienced during the operation of URFCs. Additionally, the continuous, potentiodynamic change in Mn, Co, and Fe oxidation states during the ORR and OER is elucidated with <em>operando</em> X-ray absorption spectroscopy (XAS) measurements, revealing key insights into the nature of the active sites. The results reveal important catalyst physiochemical properties and provide a guide for future research and design principles for bifunctional oxygen electrocatalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 5","pages":" 1152-1163"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00084f?page=search","citationCount":"0","resultStr":"{\"title\":\"Designing bifunctional perovskite catalysts for the oxygen reduction and evolution reactions†\",\"authors\":\"Casey E. Beall, Emiliana Fabbri, Adam H. Clark, Vivian Meier, Nur Sena Yüzbasi, Thomas Graule, Sayaka Takahashi, Yuto Shirase, Makoto Uchida and Thomas J. Schmidt\",\"doi\":\"10.1039/D4EY00084F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of unified regenerative fuel cells (URFCs) necessitates an active and stable bifunctional oxygen electrocatalyst. The unique challenge of possessing high activity for both the oxygen reduction (ORR) and oxygen evolution (OER) reactions, while maintaining stability over a wide potential window impedes the design of bifunctional oxygen electrocatalysts. Herein, two design strategies are explored to optimize their performance. The first incorporates active sites for the ORR and OER, Mn and Co, into a single perovskite structure, which is achieved with the perovskites Ba<small><sub>0.5</sub></small>Sr<small><sub>0.5</sub></small>Co<small><sub>0.8</sub></small>Mn<small><sub>0.2</sub></small>O<small><sub>3−<em>δ</em></sub></small> (BSCM) and La<small><sub>0.5</sub></small>Ba<small><sub>0.25</sub></small>Sr<small><sub>0.25</sub></small>Co<small><sub>0.5</sub></small>Mn<small><sub>0.5</sub></small>O<small><sub>3−<em>δ</em></sub></small> (LBSCM). The second combines an active ORR perovskite catalyst (La<small><sub>0.4</sub></small>Sr<small><sub>0.6</sub></small>MnO<small><sub>3−<em>δ</em></sub></small> (LSM)) with an OER active perovskite catalyst (Ba<small><sub>0.5</sub></small>Sr<small><sub>0.5</sub></small>Co<small><sub>0.8</sub></small>Fe<small><sub>0.2</sub></small>O<small><sub>3−<em>δ</em></sub></small> (BSCF)) in a physical mixed composite (BSCF/LSM). The success of the two strategies is investigated by measuring the catalysts’ catalytic performance and response to alternating reducing and oxidizing potentials to mimic the dynamic conditions experienced during the operation of URFCs. Additionally, the continuous, potentiodynamic change in Mn, Co, and Fe oxidation states during the ORR and OER is elucidated with <em>operando</em> X-ray absorption spectroscopy (XAS) measurements, revealing key insights into the nature of the active sites. The results reveal important catalyst physiochemical properties and provide a guide for future research and design principles for bifunctional oxygen electrocatalysts.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 5\",\"pages\":\" 1152-1163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00084f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00084f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00084f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
统一再生燃料电池(URFC)的开发需要一种活跃而稳定的双功能氧电催化剂。既要对氧还原(ORR)和氧进化(OER)反应具有高活性,又要在宽电位窗口内保持稳定,这一独特的挑战阻碍了双功能氧电催化剂的设计。本文探讨了两种优化其性能的设计策略。第一种策略是将 ORR 和 OER 的活性位点(Mn 和 Co)整合到单一的包晶结构中,通过包晶 Ba0.5Sr0.5Co0.8Mn0.2O3-δ (BSCM) 和 La0.5Ba0.25Sr0.25Co0.5Mn0.5O3-δ (LBSCM) 来实现。第二种策略将活性 ORR 包晶催化剂(La0.4Sr0.6MnO3-δ (LSM))与 OER 活性包晶催化剂(Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF))结合在物理混合复合材料(BSCF/LSM)中。通过测量催化剂的催化性能以及对交替还原电位和氧化电位的反应,模拟 URFC 运行过程中的动态条件,研究了这两种策略的成功之处。此外,还通过 X 射线吸收光谱 (XAS) 测量阐明了 ORR 和 OER 期间锰、钴和铁氧化态的连续电位变化,揭示了活性位点性质的关键信息。研究结果揭示了催化剂的重要理化性质,为双功能氧电催化剂的未来研究和设计原则提供了指导。
Designing bifunctional perovskite catalysts for the oxygen reduction and evolution reactions†
The development of unified regenerative fuel cells (URFCs) necessitates an active and stable bifunctional oxygen electrocatalyst. The unique challenge of possessing high activity for both the oxygen reduction (ORR) and oxygen evolution (OER) reactions, while maintaining stability over a wide potential window impedes the design of bifunctional oxygen electrocatalysts. Herein, two design strategies are explored to optimize their performance. The first incorporates active sites for the ORR and OER, Mn and Co, into a single perovskite structure, which is achieved with the perovskites Ba0.5Sr0.5Co0.8Mn0.2O3−δ (BSCM) and La0.5Ba0.25Sr0.25Co0.5Mn0.5O3−δ (LBSCM). The second combines an active ORR perovskite catalyst (La0.4Sr0.6MnO3−δ (LSM)) with an OER active perovskite catalyst (Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)) in a physical mixed composite (BSCF/LSM). The success of the two strategies is investigated by measuring the catalysts’ catalytic performance and response to alternating reducing and oxidizing potentials to mimic the dynamic conditions experienced during the operation of URFCs. Additionally, the continuous, potentiodynamic change in Mn, Co, and Fe oxidation states during the ORR and OER is elucidated with operando X-ray absorption spectroscopy (XAS) measurements, revealing key insights into the nature of the active sites. The results reveal important catalyst physiochemical properties and provide a guide for future research and design principles for bifunctional oxygen electrocatalysts.