Zhibin Zheng, Hongzhi Yan, Jiangming Wu, Min Ge, Yin Zhang
{"title":"弹性流体动力润滑条件下具有时变间隙和摩擦力的高速斜齿轮系统的三动态建模与分析","authors":"Zhibin Zheng, Hongzhi Yan, Jiangming Wu, Min Ge, Yin Zhang","doi":"10.1007/s11012-024-01793-3","DOIUrl":null,"url":null,"abstract":"<div><p>High-speed gear reducers are highly sensitive to vibration and noise, especially in new-energy vehicles. Hence, the current nonlinear dynamics model of gears does not fully consider the influence of tooth microstructure on backlash and friction. This study establishes a nonlinear friction dynamics model for a high-speed helical gear system, which includes time-varying dynamic backlash and friction coefficient based on the fractal characterization of tooth roughness. Furthermore, it investigates the influence of tooth surface roughness on the dynamic performance by taking into account the interaction between friction and vibration under Elastohydrodynamic Lubrication (EHL). Theoretical simulation results show that an increase in tooth roughness leads to an overall deterioration in the dynamic performance of the helical gear system; however, local optimization can also be observed. In the case of a dynamic tooth backlash, the amplitude of displacement oscillations increases, and the number of frequencies increases; in terms of frictional coefficient, the amplitude of displacement oscillations increases, but the change is small compared with that of the dynamic tooth backlash, and the number of frequencies in the spectrum decreases. The results indicate that the proposed model can provide a reference for controlling the tooth roughness of high-speed gears.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 7","pages":"1019 - 1036"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribo-dynamic modelling and analysis for a high-speed helical gear system with time-varying backlash and friction under Elastohydrodynamic Lubrication condition\",\"authors\":\"Zhibin Zheng, Hongzhi Yan, Jiangming Wu, Min Ge, Yin Zhang\",\"doi\":\"10.1007/s11012-024-01793-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-speed gear reducers are highly sensitive to vibration and noise, especially in new-energy vehicles. Hence, the current nonlinear dynamics model of gears does not fully consider the influence of tooth microstructure on backlash and friction. This study establishes a nonlinear friction dynamics model for a high-speed helical gear system, which includes time-varying dynamic backlash and friction coefficient based on the fractal characterization of tooth roughness. Furthermore, it investigates the influence of tooth surface roughness on the dynamic performance by taking into account the interaction between friction and vibration under Elastohydrodynamic Lubrication (EHL). Theoretical simulation results show that an increase in tooth roughness leads to an overall deterioration in the dynamic performance of the helical gear system; however, local optimization can also be observed. In the case of a dynamic tooth backlash, the amplitude of displacement oscillations increases, and the number of frequencies increases; in terms of frictional coefficient, the amplitude of displacement oscillations increases, but the change is small compared with that of the dynamic tooth backlash, and the number of frequencies in the spectrum decreases. The results indicate that the proposed model can provide a reference for controlling the tooth roughness of high-speed gears.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 7\",\"pages\":\"1019 - 1036\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01793-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01793-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Tribo-dynamic modelling and analysis for a high-speed helical gear system with time-varying backlash and friction under Elastohydrodynamic Lubrication condition
High-speed gear reducers are highly sensitive to vibration and noise, especially in new-energy vehicles. Hence, the current nonlinear dynamics model of gears does not fully consider the influence of tooth microstructure on backlash and friction. This study establishes a nonlinear friction dynamics model for a high-speed helical gear system, which includes time-varying dynamic backlash and friction coefficient based on the fractal characterization of tooth roughness. Furthermore, it investigates the influence of tooth surface roughness on the dynamic performance by taking into account the interaction between friction and vibration under Elastohydrodynamic Lubrication (EHL). Theoretical simulation results show that an increase in tooth roughness leads to an overall deterioration in the dynamic performance of the helical gear system; however, local optimization can also be observed. In the case of a dynamic tooth backlash, the amplitude of displacement oscillations increases, and the number of frequencies increases; in terms of frictional coefficient, the amplitude of displacement oscillations increases, but the change is small compared with that of the dynamic tooth backlash, and the number of frequencies in the spectrum decreases. The results indicate that the proposed model can provide a reference for controlling the tooth roughness of high-speed gears.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.