{"title":"具有偏移节点的 $$q-$ 贝塞尔曲线","authors":"Jaspreet Kaur, Meenu Goyal","doi":"10.1007/s40995-024-01653-5","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores the applications of <i>q</i>-calculus in polynomial basis functions and curve modeling. We define the properties of <i>q</i>-Bernstein Cholodowsky basis polynomials. A novel approach to Bézier curves is introduced, utilizing basis polynomials to create generalized curves with shape-preserving properties. Additionally, the article presents degree elevation and De Casteljau algorithms tailored for these curves.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"48 6","pages":"1551 - 1560"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\\(q-\\\\)Bézier Curves with Shifted Nodes\",\"authors\":\"Jaspreet Kaur, Meenu Goyal\",\"doi\":\"10.1007/s40995-024-01653-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article explores the applications of <i>q</i>-calculus in polynomial basis functions and curve modeling. We define the properties of <i>q</i>-Bernstein Cholodowsky basis polynomials. A novel approach to Bézier curves is introduced, utilizing basis polynomials to create generalized curves with shape-preserving properties. Additionally, the article presents degree elevation and De Casteljau algorithms tailored for these curves.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"48 6\",\"pages\":\"1551 - 1560\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01653-5\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01653-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了 q 微积分在多项式基函数和曲线建模中的应用。我们定义了 q-Bernstein Cholodowsky 基多项式的性质。文章介绍了贝塞尔曲线的一种新方法,即利用基多项式创建具有形状保持特性的广义曲线。此外,文章还介绍了为这些曲线量身定制的度提升和 De Casteljau 算法。
This article explores the applications of q-calculus in polynomial basis functions and curve modeling. We define the properties of q-Bernstein Cholodowsky basis polynomials. A novel approach to Bézier curves is introduced, utilizing basis polynomials to create generalized curves with shape-preserving properties. Additionally, the article presents degree elevation and De Casteljau algorithms tailored for these curves.
期刊介绍:
The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences