论大伽罗瓦表示序列的某些局部性质

IF 0.6 3区 数学 Q3 MATHEMATICS
Jyoti Prakash Saha, Aniruddha Sudarshan
{"title":"论大伽罗瓦表示序列的某些局部性质","authors":"Jyoti Prakash Saha,&nbsp;Aniruddha Sudarshan","doi":"10.1016/j.jnt.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we prove that for a convergent sequence of residually absolutely irreducible representations of the absolute Galois group of a number field <em>F</em> with coefficients in a domain, which admits a finite monomorphism from a power series ring over a <em>p</em>-adic integer ring, the set of places of <em>F</em> where some of the representations ramifies has density zero. Using this, we extend a result of Das–Rajan to such convergent sequences. We also establish a strong multiplicity one theorem for big Galois representations.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 295-306"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some local properties of sequences of big Galois representations\",\"authors\":\"Jyoti Prakash Saha,&nbsp;Aniruddha Sudarshan\",\"doi\":\"10.1016/j.jnt.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we prove that for a convergent sequence of residually absolutely irreducible representations of the absolute Galois group of a number field <em>F</em> with coefficients in a domain, which admits a finite monomorphism from a power series ring over a <em>p</em>-adic integer ring, the set of places of <em>F</em> where some of the representations ramifies has density zero. Using this, we extend a result of Das–Rajan to such convergent sequences. We also establish a strong multiplicity one theorem for big Galois representations.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"264 \",\"pages\":\"Pages 295-306\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001410\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001410","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们证明了对于系数在一个域中的数域绝对伽罗瓦群的残差绝对不可还原表示的收敛序列,它容许从一个幂级数环到一个自整数环的有限单态,其中一些表示的斜交位置集合的密度为零。利用这一点,我们将达斯-拉詹的一个结果扩展到了这种收敛序列。我们还为大伽罗瓦表示建立了强乘数一定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some local properties of sequences of big Galois representations

In this article, we prove that for a convergent sequence of residually absolutely irreducible representations of the absolute Galois group of a number field F with coefficients in a domain, which admits a finite monomorphism from a power series ring over a p-adic integer ring, the set of places of F where some of the representations ramifies has density zero. Using this, we extend a result of Das–Rajan to such convergent sequences. We also establish a strong multiplicity one theorem for big Galois representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信