{"title":"论大伽罗瓦表示序列的某些局部性质","authors":"Jyoti Prakash Saha, Aniruddha Sudarshan","doi":"10.1016/j.jnt.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we prove that for a convergent sequence of residually absolutely irreducible representations of the absolute Galois group of a number field <em>F</em> with coefficients in a domain, which admits a finite monomorphism from a power series ring over a <em>p</em>-adic integer ring, the set of places of <em>F</em> where some of the representations ramifies has density zero. Using this, we extend a result of Das–Rajan to such convergent sequences. We also establish a strong multiplicity one theorem for big Galois representations.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some local properties of sequences of big Galois representations\",\"authors\":\"Jyoti Prakash Saha, Aniruddha Sudarshan\",\"doi\":\"10.1016/j.jnt.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we prove that for a convergent sequence of residually absolutely irreducible representations of the absolute Galois group of a number field <em>F</em> with coefficients in a domain, which admits a finite monomorphism from a power series ring over a <em>p</em>-adic integer ring, the set of places of <em>F</em> where some of the representations ramifies has density zero. Using this, we extend a result of Das–Rajan to such convergent sequences. We also establish a strong multiplicity one theorem for big Galois representations.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On some local properties of sequences of big Galois representations
In this article, we prove that for a convergent sequence of residually absolutely irreducible representations of the absolute Galois group of a number field F with coefficients in a domain, which admits a finite monomorphism from a power series ring over a p-adic integer ring, the set of places of F where some of the representations ramifies has density zero. Using this, we extend a result of Das–Rajan to such convergent sequences. We also establish a strong multiplicity one theorem for big Galois representations.