投影线的赫克特征空间

IF 0.6 3区 数学 Q3 MATHEMATICS
Roberto Alvarenga , Nans Bonnel
{"title":"投影线的赫克特征空间","authors":"Roberto Alvarenga ,&nbsp;Nans Bonnel","doi":"10.1016/j.jnt.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we investigate the action of (ramified and unramified) Hecke operators on automorphic forms for the function field of the projective line defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and for the group <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We first compute the dimension of the Hecke eigenspaces for every generator of the unramified Hecke algebra. Thus, we consider the ramification in a point of degree one and explicitly describe the action of certain ramified Hecke operators on automorphic forms. Moreover, we also compute the dimensions of its eigenspaces for those ramified Hecke operators. We finish the article considering more general ramifications, namely those one attached to a closed point of higher degree.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 59-98"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hecke eigenspaces for the projective line\",\"authors\":\"Roberto Alvarenga ,&nbsp;Nans Bonnel\",\"doi\":\"10.1016/j.jnt.2024.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we investigate the action of (ramified and unramified) Hecke operators on automorphic forms for the function field of the projective line defined over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and for the group <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We first compute the dimension of the Hecke eigenspaces for every generator of the unramified Hecke algebra. Thus, we consider the ramification in a point of degree one and explicitly describe the action of certain ramified Hecke operators on automorphic forms. Moreover, we also compute the dimensions of its eigenspaces for those ramified Hecke operators. We finish the article considering more general ramifications, namely those one attached to a closed point of higher degree.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"264 \",\"pages\":\"Pages 59-98\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001392\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001392","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们研究了(有夯和无夯)赫克算子对投影线的函数域的自变形式的作用,该函数域定义在...上,并为...群。我们首先计算未ramified Hecke 代数中每个生成器的 Hecke 特征空间维数。因此,我们考虑了阶数为 1 的点的斜切,并明确描述了某些斜切赫克算子对自动形式的作用。此外,我们还计算了这些夯化赫可算子的特征空间维数。文章的最后,我们考虑了更一般的斜切,即那些与更高阶的闭合点相连的斜切。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hecke eigenspaces for the projective line

In this article we investigate the action of (ramified and unramified) Hecke operators on automorphic forms for the function field of the projective line defined over Fq and for the group GL2. We first compute the dimension of the Hecke eigenspaces for every generator of the unramified Hecke algebra. Thus, we consider the ramification in a point of degree one and explicitly describe the action of certain ramified Hecke operators on automorphic forms. Moreover, we also compute the dimensions of its eigenspaces for those ramified Hecke operators. We finish the article considering more general ramifications, namely those one attached to a closed point of higher degree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信