Jaidev Sharma, Shyamal Kumar Banerjee, Nitin Kumar Singh, Hari Om Vats
{"title":"太阳过渡区旋转的周期性和太阳黑子数","authors":"Jaidev Sharma, Shyamal Kumar Banerjee, Nitin Kumar Singh, Hari Om Vats","doi":"10.1007/s11207-024-02335-6","DOIUrl":null,"url":null,"abstract":"<div><p>The long-term study of the temporal variation of the rotation period of the solar photosphere, chromosphere, and corona has been widely undertaken. To date it is unclear whether the temporal variation of the rotation period of the solar transition region has a systematic periodicity. In this article we perform a study on the temporal variation of the rotation period of the solar transition region. For this purpose, we use the Lyman <span>\\(\\alpha \\)</span> line emission at a wavelength of 121.56 nm corresponding to the solar transition region from the year 1965 to 2019, covering four complete solar cycles (i.e., Cycles 21, 22, 23, 24) as well as descending and ascending phases of Cycles 20 and 25, respectively. An autocorrelation analysis depicts that the average sidereal rotation period of the transition region (from 1965 to 2019) is 24.8 days. Furthermore, we find that a significant periodicity of about 12 years exists in the temporal variation of the sidereal rotation period of the solar transition region. The results indicate that this periodicity is closely linked to the 11-year Schwabe cycle. A cross-correlation analysis between the time series of the sidereal rotation period and sunspot numbers (as a function of lag in years) exhibits a positive correlation between these aforementioned parameters. From this result, we can state that the sidereal rotation period of the solar transition region leads the solar activity by about six months. This correlation again proves the periodicity of about 11 years in the rotation period of the transition region which is closely linked to the 11-year Schwabe cycle. Furthermore, long-term variation of rotation periods also demonstrates a decreasing trend from 1965 to 2019, which is similar to that in the sunspot numbers. From this long-term study, it seems that solar activity is largely driven by solar rotation.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodicity in the Rotation of the Solar Transition Region and Sunspot Numbers\",\"authors\":\"Jaidev Sharma, Shyamal Kumar Banerjee, Nitin Kumar Singh, Hari Om Vats\",\"doi\":\"10.1007/s11207-024-02335-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The long-term study of the temporal variation of the rotation period of the solar photosphere, chromosphere, and corona has been widely undertaken. To date it is unclear whether the temporal variation of the rotation period of the solar transition region has a systematic periodicity. In this article we perform a study on the temporal variation of the rotation period of the solar transition region. For this purpose, we use the Lyman <span>\\\\(\\\\alpha \\\\)</span> line emission at a wavelength of 121.56 nm corresponding to the solar transition region from the year 1965 to 2019, covering four complete solar cycles (i.e., Cycles 21, 22, 23, 24) as well as descending and ascending phases of Cycles 20 and 25, respectively. An autocorrelation analysis depicts that the average sidereal rotation period of the transition region (from 1965 to 2019) is 24.8 days. Furthermore, we find that a significant periodicity of about 12 years exists in the temporal variation of the sidereal rotation period of the solar transition region. The results indicate that this periodicity is closely linked to the 11-year Schwabe cycle. A cross-correlation analysis between the time series of the sidereal rotation period and sunspot numbers (as a function of lag in years) exhibits a positive correlation between these aforementioned parameters. From this result, we can state that the sidereal rotation period of the solar transition region leads the solar activity by about six months. This correlation again proves the periodicity of about 11 years in the rotation period of the transition region which is closely linked to the 11-year Schwabe cycle. Furthermore, long-term variation of rotation periods also demonstrates a decreasing trend from 1965 to 2019, which is similar to that in the sunspot numbers. From this long-term study, it seems that solar activity is largely driven by solar rotation.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02335-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02335-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Periodicity in the Rotation of the Solar Transition Region and Sunspot Numbers
The long-term study of the temporal variation of the rotation period of the solar photosphere, chromosphere, and corona has been widely undertaken. To date it is unclear whether the temporal variation of the rotation period of the solar transition region has a systematic periodicity. In this article we perform a study on the temporal variation of the rotation period of the solar transition region. For this purpose, we use the Lyman \(\alpha \) line emission at a wavelength of 121.56 nm corresponding to the solar transition region from the year 1965 to 2019, covering four complete solar cycles (i.e., Cycles 21, 22, 23, 24) as well as descending and ascending phases of Cycles 20 and 25, respectively. An autocorrelation analysis depicts that the average sidereal rotation period of the transition region (from 1965 to 2019) is 24.8 days. Furthermore, we find that a significant periodicity of about 12 years exists in the temporal variation of the sidereal rotation period of the solar transition region. The results indicate that this periodicity is closely linked to the 11-year Schwabe cycle. A cross-correlation analysis between the time series of the sidereal rotation period and sunspot numbers (as a function of lag in years) exhibits a positive correlation between these aforementioned parameters. From this result, we can state that the sidereal rotation period of the solar transition region leads the solar activity by about six months. This correlation again proves the periodicity of about 11 years in the rotation period of the transition region which is closely linked to the 11-year Schwabe cycle. Furthermore, long-term variation of rotation periods also demonstrates a decreasing trend from 1965 to 2019, which is similar to that in the sunspot numbers. From this long-term study, it seems that solar activity is largely driven by solar rotation.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.