Alessandra Cretarola, Gianna Figà-Talamanca, Marco Patacca
{"title":"基于情绪的随机波动模型中的期权定价","authors":"Alessandra Cretarola, Gianna Figà-Talamanca, Marco Patacca","doi":"10.1007/s10436-024-00448-3","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a Markov-modulated stochastic volatility model that captures the dependency of market regimes on investor sentiment. The main contribution lies in developing a modified version of the classical Heston model by allowing for a sentiment-driven bias in the volatility of the asset. Specifically, a two-factor Markov-modulated stochastic volatility model is proposed, integrating a diffusion coefficient in the risky asset dynamics and a correlation parameter influenced by both the volatility process and a continuous-time Markov chain accounting for the sentiment-bias. Diverging from conventional approaches in option pricing models, this framework operates under the real-world probability measure, necessitating considerations about the existence of an equivalent martingale pricing measure. The purpose of this paper is to derive a closed formula for the pricing of European-style derivatives and to fit the model on market data through a suitable calibration procedure. A comparison with the Heston benchmark model is provided for a sample of Apple, Amazon, and Bank of America stock options.</p>","PeriodicalId":45289,"journal":{"name":"Annals of Finance","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option pricing in a sentiment-biased stochastic volatility model\",\"authors\":\"Alessandra Cretarola, Gianna Figà-Talamanca, Marco Patacca\",\"doi\":\"10.1007/s10436-024-00448-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a Markov-modulated stochastic volatility model that captures the dependency of market regimes on investor sentiment. The main contribution lies in developing a modified version of the classical Heston model by allowing for a sentiment-driven bias in the volatility of the asset. Specifically, a two-factor Markov-modulated stochastic volatility model is proposed, integrating a diffusion coefficient in the risky asset dynamics and a correlation parameter influenced by both the volatility process and a continuous-time Markov chain accounting for the sentiment-bias. Diverging from conventional approaches in option pricing models, this framework operates under the real-world probability measure, necessitating considerations about the existence of an equivalent martingale pricing measure. The purpose of this paper is to derive a closed formula for the pricing of European-style derivatives and to fit the model on market data through a suitable calibration procedure. A comparison with the Heston benchmark model is provided for a sample of Apple, Amazon, and Bank of America stock options.</p>\",\"PeriodicalId\":45289,\"journal\":{\"name\":\"Annals of Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10436-024-00448-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10436-024-00448-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Option pricing in a sentiment-biased stochastic volatility model
This paper presents a Markov-modulated stochastic volatility model that captures the dependency of market regimes on investor sentiment. The main contribution lies in developing a modified version of the classical Heston model by allowing for a sentiment-driven bias in the volatility of the asset. Specifically, a two-factor Markov-modulated stochastic volatility model is proposed, integrating a diffusion coefficient in the risky asset dynamics and a correlation parameter influenced by both the volatility process and a continuous-time Markov chain accounting for the sentiment-bias. Diverging from conventional approaches in option pricing models, this framework operates under the real-world probability measure, necessitating considerations about the existence of an equivalent martingale pricing measure. The purpose of this paper is to derive a closed formula for the pricing of European-style derivatives and to fit the model on market data through a suitable calibration procedure. A comparison with the Heston benchmark model is provided for a sample of Apple, Amazon, and Bank of America stock options.
期刊介绍:
Annals of Finance provides an outlet for original research in all areas of finance and its applications to other disciplines having a clear and substantive link to the general theme of finance. In particular, innovative research papers of moderate length of the highest quality in all scientific areas that are motivated by the analysis of financial problems will be considered. Annals of Finance''s scope encompasses - but is not limited to - the following areas: accounting and finance, asset pricing, banking and finance, capital markets and finance, computational finance, corporate finance, derivatives, dynamical and chaotic systems in finance, economics and finance, empirical finance, experimental finance, finance and the theory of the firm, financial econometrics, financial institutions, mathematical finance, money and finance, portfolio analysis, regulation, stochastic analysis and finance, stock market analysis, systemic risk and financial stability. Annals of Finance also publishes special issues on any topic in finance and its applications of current interest. A small section, entitled finance notes, will be devoted solely to publishing short articles – up to ten pages in length, of substantial interest in finance. Officially cited as: Ann Finance