作为绝对缩回和最大网格的薄片网格

IF 0.6 4区 数学 Q3 MATHEMATICS
Gábor Czédli
{"title":"作为绝对缩回和最大网格的薄片网格","authors":"Gábor Czédli","doi":"10.1007/s00012-024-00861-9","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that <i>slim patch lattices</i> are exactly the <i>absolute retracts</i> with more than two elements for the category of slim semimodular lattices with length-preserving lattice embeddings as morphisms. Also, slim patch lattices are the same as the <i>maximal objects</i> <i>L</i> in this category such that <span>\\(|L|&gt;2.\\)</span> Furthermore, slim patch lattices are characterized as the <i>algebraically closed lattices</i> <i>L</i> in this category such that <span>\\(|L|&gt;2.\\)</span> Finally, we prove that if we consider <span>\\(\\{0,1\\}\\)</span>-preserving lattice homomorphisms rather than length-preserving ones, then the absolute retracts for the class of slim semimodular lattices are the at most 4-element boolean lattices.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slim patch lattices as absolute retracts and maximal lattices\",\"authors\":\"Gábor Czédli\",\"doi\":\"10.1007/s00012-024-00861-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that <i>slim patch lattices</i> are exactly the <i>absolute retracts</i> with more than two elements for the category of slim semimodular lattices with length-preserving lattice embeddings as morphisms. Also, slim patch lattices are the same as the <i>maximal objects</i> <i>L</i> in this category such that <span>\\\\(|L|&gt;2.\\\\)</span> Furthermore, slim patch lattices are characterized as the <i>algebraically closed lattices</i> <i>L</i> in this category such that <span>\\\\(|L|&gt;2.\\\\)</span> Finally, we prove that if we consider <span>\\\\(\\\\{0,1\\\\}\\\\)</span>-preserving lattice homomorphisms rather than length-preserving ones, then the absolute retracts for the class of slim semimodular lattices are the at most 4-element boolean lattices.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":\"85 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00861-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00861-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于以保留长度的网格嵌入为态式的细长半模网格范畴来说,细长补丁网格正是具有两个以上元素的绝对缩回。而且,细长补丁网格与这个范畴中的最大对象 L 相同,使得 \(|L|>2.\) 此外,细长补丁网格的特征是这个范畴中的代数闭合网格 L,使得 \(|L|>2.\) 最后,我们证明了细长补丁网格与这个范畴中的最大对象 L 相同,使得 \(|L|>2.\) 。\最后,我们证明如果我们考虑的是((\{0,1\}\)保长的网格同态而不是保长的网格同态,那么纤细半模网格类的绝对收回就是最多 4 元素的布尔网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Slim patch lattices as absolute retracts and maximal lattices

Slim patch lattices as absolute retracts and maximal lattices

Slim patch lattices as absolute retracts and maximal lattices

We prove that slim patch lattices are exactly the absolute retracts with more than two elements for the category of slim semimodular lattices with length-preserving lattice embeddings as morphisms. Also, slim patch lattices are the same as the maximal objects L in this category such that \(|L|>2.\) Furthermore, slim patch lattices are characterized as the algebraically closed lattices L in this category such that \(|L|>2.\) Finally, we prove that if we consider \(\{0,1\}\)-preserving lattice homomorphisms rather than length-preserving ones, then the absolute retracts for the class of slim semimodular lattices are the at most 4-element boolean lattices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信