阿基米德向量网格中自约化元素的特征

IF 0.6 4区 数学 Q3 MATHEMATICS
Zied Jbeli, Mohamed Ali Toumi
{"title":"阿基米德向量网格中自约化元素的特征","authors":"Zied Jbeli,&nbsp;Mohamed Ali Toumi","doi":"10.1007/s00012-024-00860-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, new purely topological approaches are furnished in order to characterize self-majorizing elements in an Archimedean vector lattice <i>A</i>. More precisely, it is shown that an element <span>\\(0&lt;f\\in A\\)</span> is a self-majorizing element if and only if every <i>f</i>-maximal order ideal of <i>A</i> is relatively uniformly closed. In addition, it is proved that self-majorizing elements are characterized via the hull–kernel topology on both the set of all proper prime order ideals <span>\\({\\mathcal {P}}\\)</span> and on the set of all <i>g</i>-maximal order ideals <span>\\({\\mathcal {Q}}\\)</span> of <i>A</i>,  for all <span>\\(g\\in A^{+}.\\)</span> In fact, the set of all prime order ideals of <i>A</i> not containing <i>f</i> (respectively, the set of all <i>g</i>-maximal order ideals of <i>A</i> not containing <i>f</i>,  for all <span>\\(g\\in A^{+})\\)</span> is a closed with respect to the hull–kernel topology on <span>\\({\\mathcal {P}}\\)</span> (respectively, on <span>\\({\\mathcal {Q}})\\)</span> if and only if <i>f</i> is a self-majorizing element in <i>A</i>.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of self-majorizing elements in Archimedean vector lattices\",\"authors\":\"Zied Jbeli,&nbsp;Mohamed Ali Toumi\",\"doi\":\"10.1007/s00012-024-00860-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, new purely topological approaches are furnished in order to characterize self-majorizing elements in an Archimedean vector lattice <i>A</i>. More precisely, it is shown that an element <span>\\\\(0&lt;f\\\\in A\\\\)</span> is a self-majorizing element if and only if every <i>f</i>-maximal order ideal of <i>A</i> is relatively uniformly closed. In addition, it is proved that self-majorizing elements are characterized via the hull–kernel topology on both the set of all proper prime order ideals <span>\\\\({\\\\mathcal {P}}\\\\)</span> and on the set of all <i>g</i>-maximal order ideals <span>\\\\({\\\\mathcal {Q}}\\\\)</span> of <i>A</i>,  for all <span>\\\\(g\\\\in A^{+}.\\\\)</span> In fact, the set of all prime order ideals of <i>A</i> not containing <i>f</i> (respectively, the set of all <i>g</i>-maximal order ideals of <i>A</i> not containing <i>f</i>,  for all <span>\\\\(g\\\\in A^{+})\\\\)</span> is a closed with respect to the hull–kernel topology on <span>\\\\({\\\\mathcal {P}}\\\\)</span> (respectively, on <span>\\\\({\\\\mathcal {Q}})\\\\)</span> if and only if <i>f</i> is a self-majorizing element in <i>A</i>.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00860-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00860-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了新的纯拓扑方法来描述阿基米德向量网格 A 中的自主要元素。更确切地说,本文证明了元素 \(0<f\in A\) 是一个自主要元素,当且仅当 A 的每个 f 最大阶理想都是相对均匀闭合的。此外,我们还证明了对于 A 中的所有 \(g\in A^{+}.\事实上,不包含 f 的 A 的所有素阶理想的集合(分别是不包含 f 的 A 的所有 g 的最大阶理想的集合,对于所有 \(g\in A^{+})\) 是一个关于 \({\mathcal {P}}\) (分别是 \({\mathcal {Q}})\)上的空心核拓扑的封闭集合,当且仅当 f 是 A 中的自ajorizing 元素时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of self-majorizing elements in Archimedean vector lattices

In this paper, new purely topological approaches are furnished in order to characterize self-majorizing elements in an Archimedean vector lattice A. More precisely, it is shown that an element \(0<f\in A\) is a self-majorizing element if and only if every f-maximal order ideal of A is relatively uniformly closed. In addition, it is proved that self-majorizing elements are characterized via the hull–kernel topology on both the set of all proper prime order ideals \({\mathcal {P}}\) and on the set of all g-maximal order ideals \({\mathcal {Q}}\) of A,  for all \(g\in A^{+}.\) In fact, the set of all prime order ideals of A not containing f (respectively, the set of all g-maximal order ideals of A not containing f,  for all \(g\in A^{+})\) is a closed with respect to the hull–kernel topology on \({\mathcal {P}}\) (respectively, on \({\mathcal {Q}})\) if and only if f is a self-majorizing element in A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信