人子宫内膜间充质干细胞与小鼠卵母细胞在三维培养系统中共同培养形成卵巢类器官

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohammad Jafar Bagheri, Mojtaba Rezazadeh Valojerdi, Mojdeh Salehnia
{"title":"人子宫内膜间充质干细胞与小鼠卵母细胞在三维培养系统中共同培养形成卵巢类器官","authors":"Mohammad Jafar Bagheri, Mojtaba Rezazadeh Valojerdi, Mojdeh Salehnia","doi":"10.1007/s10616-024-00639-w","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this study was to compare the formation of organoid structures by co-culturing of human endometrial mesenchymal stem cells (hEnMSCs) and mouse germinal vesicle (GV) oocytes in hanging drop and sodium alginate hydrogel co-culture methods. Following the preparation of hEnMSCs and partially denuded mouse germinal vesicle oocytes, they were co-cultured in hanging drop and sodium alginate hydrogel systems as two experimental groups. In respected control groups the hEnMSCs were cultured without oocytes. The organoid formation was evaluated under the inverted microscope in all studied groups during the culture period. The hematoxylin and eosin, alcian blue, periodic acid Schiff, and Masson's trichrome methods, were applied for morphological evaluation and extracellular matrix components staining such as glycosaminoglycan, carbohydrate, and collagen fibers. In addition, the germ cell-like characteristics within the organoid structures were investigated via alkaline phosphatase activity immunocytochemistry for DEAD-box polypeptide 4 (DDX4), and the expression of octamer-binding transcription factor 4 (OCT4), DDX4, and synaptonemal complex protein 3 (SYCP3) genes by real-time RT-PCR. The culturing of hEnMSCs in the hanging drop method led to the formation of organoid structures while this structure was not seen in sodium alginate hydrogel culture. The mean diameter of organoid structures was increased during 4 days of culture in both the experimental and control groups in the hanging drop method, reaching 675.50 ± 18.55 µm and 670.25 ± 21.40 µm, respectively (P &lt; 0.05). Morphological staining indicated some large ovoid cells with euchromatin nuclei in the experimental group, whereas, in the control group cells showed dark and dense nuclei. The extracellular matrix components were deposited in organoid structures in both control and experimental groups. The positive alkaline phosphatase activity and immunocytochemistry for DDX4 confirmed the presence of germ cell-like in the experimental group. Real-time RT-PCR showed a significant increase in the expression of DDX4 and SYCP3 genes and a decrease in the level of OCT4 expression in the experimental group compared with its controls. This study successfully generated organoid structures by co-culture of hEnMSCs and oocytes in the hanging drop method and the hEnMSCs could be differentiated into germ cell-like. This organoid structure has potential applications in regenerative medicine and reproductive biology.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"174 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of ovarian organoid by co-culture of human endometrial mesenchymal stem cells and mouse oocyte in 3-dimensional culture system\",\"authors\":\"Mohammad Jafar Bagheri, Mojtaba Rezazadeh Valojerdi, Mojdeh Salehnia\",\"doi\":\"10.1007/s10616-024-00639-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this study was to compare the formation of organoid structures by co-culturing of human endometrial mesenchymal stem cells (hEnMSCs) and mouse germinal vesicle (GV) oocytes in hanging drop and sodium alginate hydrogel co-culture methods. Following the preparation of hEnMSCs and partially denuded mouse germinal vesicle oocytes, they were co-cultured in hanging drop and sodium alginate hydrogel systems as two experimental groups. In respected control groups the hEnMSCs were cultured without oocytes. The organoid formation was evaluated under the inverted microscope in all studied groups during the culture period. The hematoxylin and eosin, alcian blue, periodic acid Schiff, and Masson's trichrome methods, were applied for morphological evaluation and extracellular matrix components staining such as glycosaminoglycan, carbohydrate, and collagen fibers. In addition, the germ cell-like characteristics within the organoid structures were investigated via alkaline phosphatase activity immunocytochemistry for DEAD-box polypeptide 4 (DDX4), and the expression of octamer-binding transcription factor 4 (OCT4), DDX4, and synaptonemal complex protein 3 (SYCP3) genes by real-time RT-PCR. The culturing of hEnMSCs in the hanging drop method led to the formation of organoid structures while this structure was not seen in sodium alginate hydrogel culture. The mean diameter of organoid structures was increased during 4 days of culture in both the experimental and control groups in the hanging drop method, reaching 675.50 ± 18.55 µm and 670.25 ± 21.40 µm, respectively (P &lt; 0.05). Morphological staining indicated some large ovoid cells with euchromatin nuclei in the experimental group, whereas, in the control group cells showed dark and dense nuclei. The extracellular matrix components were deposited in organoid structures in both control and experimental groups. The positive alkaline phosphatase activity and immunocytochemistry for DDX4 confirmed the presence of germ cell-like in the experimental group. Real-time RT-PCR showed a significant increase in the expression of DDX4 and SYCP3 genes and a decrease in the level of OCT4 expression in the experimental group compared with its controls. This study successfully generated organoid structures by co-culture of hEnMSCs and oocytes in the hanging drop method and the hEnMSCs could be differentiated into germ cell-like. This organoid structure has potential applications in regenerative medicine and reproductive biology.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"174 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-024-00639-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00639-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是比较人子宫内膜间充质干细胞(hEnMSCs)和小鼠生殖泡(GV)卵母细胞在悬滴法和藻酸钠水凝胶共培养法中形成类器官结构的情况。制备hEnMSCs和部分变性的小鼠生殖小泡卵母细胞后,将它们分别作为两个实验组,在悬滴法和海藻酸钠水凝胶系统中进行共培养。在受尊重的对照组中,hEnMSCs 在没有卵母细胞的情况下进行培养。在培养期间,在倒置显微镜下对所有研究组的类器官形成情况进行评估。苏木精和伊红、阿氏蓝、周期酸希夫和马森三色染色法被用于形态学评估和细胞外基质成分染色,如糖胺聚糖、碳水化合物和胶原纤维。此外,通过碱性磷酸酶活性免疫细胞化学法检测 DEAD-box 多肽 4 (DDX4),以及实时 RT-PCR 检测八聚体结合转录因子 4 (OCT4)、DDX4 和 synaptonemal 复合蛋白 3 (SYCP3) 基因的表达,研究了类器官结构内的生殖细胞样特征。用悬滴法培养 hEnMSCs 能形成类器官结构,而在藻酸钠水凝胶培养中则看不到这种结构。在悬滴法培养 4 天期间,实验组和对照组的类器官结构平均直径都有所增加,分别达到 675.50 ± 18.55 µm 和 670.25 ± 21.40 µm(P <0.05)。形态学染色显示,实验组有一些大的卵圆形细胞,细胞核呈异色性,而对照组细胞核呈深色且致密。对照组和实验组的细胞外基质成分都沉积在类器官结构中。碱性磷酸酶活性阳性和 DDX4 免疫细胞化学证实实验组存在生殖细胞样。实时 RT-PCR 显示,与对照组相比,实验组 DDX4 和 SYCP3 基因的表达量显著增加,而 OCT4 的表达量则有所下降。本研究通过悬滴法成功地将 hEnMSCs 和卵母细胞共同培养生成了类器官结构,并且 hEnMSCs 可以分化为类生殖细胞。这种类器官结构有望应用于再生医学和生殖生物学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Formation of ovarian organoid by co-culture of human endometrial mesenchymal stem cells and mouse oocyte in 3-dimensional culture system

Formation of ovarian organoid by co-culture of human endometrial mesenchymal stem cells and mouse oocyte in 3-dimensional culture system

The purpose of this study was to compare the formation of organoid structures by co-culturing of human endometrial mesenchymal stem cells (hEnMSCs) and mouse germinal vesicle (GV) oocytes in hanging drop and sodium alginate hydrogel co-culture methods. Following the preparation of hEnMSCs and partially denuded mouse germinal vesicle oocytes, they were co-cultured in hanging drop and sodium alginate hydrogel systems as two experimental groups. In respected control groups the hEnMSCs were cultured without oocytes. The organoid formation was evaluated under the inverted microscope in all studied groups during the culture period. The hematoxylin and eosin, alcian blue, periodic acid Schiff, and Masson's trichrome methods, were applied for morphological evaluation and extracellular matrix components staining such as glycosaminoglycan, carbohydrate, and collagen fibers. In addition, the germ cell-like characteristics within the organoid structures were investigated via alkaline phosphatase activity immunocytochemistry for DEAD-box polypeptide 4 (DDX4), and the expression of octamer-binding transcription factor 4 (OCT4), DDX4, and synaptonemal complex protein 3 (SYCP3) genes by real-time RT-PCR. The culturing of hEnMSCs in the hanging drop method led to the formation of organoid structures while this structure was not seen in sodium alginate hydrogel culture. The mean diameter of organoid structures was increased during 4 days of culture in both the experimental and control groups in the hanging drop method, reaching 675.50 ± 18.55 µm and 670.25 ± 21.40 µm, respectively (P < 0.05). Morphological staining indicated some large ovoid cells with euchromatin nuclei in the experimental group, whereas, in the control group cells showed dark and dense nuclei. The extracellular matrix components were deposited in organoid structures in both control and experimental groups. The positive alkaline phosphatase activity and immunocytochemistry for DDX4 confirmed the presence of germ cell-like in the experimental group. Real-time RT-PCR showed a significant increase in the expression of DDX4 and SYCP3 genes and a decrease in the level of OCT4 expression in the experimental group compared with its controls. This study successfully generated organoid structures by co-culture of hEnMSCs and oocytes in the hanging drop method and the hEnMSCs could be differentiated into germ cell-like. This organoid structure has potential applications in regenerative medicine and reproductive biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信