在受振荡流体强迫作用的波纹边界上同时测量速度和浓度

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Juan C. Vargas-Martinez, Sylvia Rodríguez-Abudo
{"title":"在受振荡流体强迫作用的波纹边界上同时测量速度和浓度","authors":"Juan C. Vargas-Martinez,&nbsp;Sylvia Rodríguez-Abudo","doi":"10.1007/s00348-024-03840-x","DOIUrl":null,"url":null,"abstract":"<div><p>We describe an oscillating boundary layer apparatus (OBLA) to investigate mass and momentum transfer in the wave bottom boundary layer. The facility is designed such that near-bed shallow water orbital velocities are physically modeled in full scale. A PIV/PLIF system allows for simultaneously resolving the intra-ripple velocity and dye concentration fields. We examine two cases by injecting dye at the trough and crest of the rippled boundary. The extent of the plume is the largest near the zero-crossing of the free-stream velocity and 40<span>\\(^\\circ\\)</span> later for the trough and crest case, respectively. Both cases showed periodic turbulent vortical structures influencing the phase-averaged concentration plumes. For normalized concentrations greater than 0.01, the plumes remained within the boundary layer and traveled half a ripple length for both cases. Dye spread vertically upward about 2 and 1.5 ripple heights from the crest and trough sources, respectively. Stronger advection was observed over the crests, along with a clear dependence on bedform asymmetry. </p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous velocity and concentration measurements over a rippled boundary subjected to oscillating fluid forcing\",\"authors\":\"Juan C. Vargas-Martinez,&nbsp;Sylvia Rodríguez-Abudo\",\"doi\":\"10.1007/s00348-024-03840-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe an oscillating boundary layer apparatus (OBLA) to investigate mass and momentum transfer in the wave bottom boundary layer. The facility is designed such that near-bed shallow water orbital velocities are physically modeled in full scale. A PIV/PLIF system allows for simultaneously resolving the intra-ripple velocity and dye concentration fields. We examine two cases by injecting dye at the trough and crest of the rippled boundary. The extent of the plume is the largest near the zero-crossing of the free-stream velocity and 40<span>\\\\(^\\\\circ\\\\)</span> later for the trough and crest case, respectively. Both cases showed periodic turbulent vortical structures influencing the phase-averaged concentration plumes. For normalized concentrations greater than 0.01, the plumes remained within the boundary layer and traveled half a ripple length for both cases. Dye spread vertically upward about 2 and 1.5 ripple heights from the crest and trough sources, respectively. Stronger advection was observed over the crests, along with a clear dependence on bedform asymmetry. </p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"65 7\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03840-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03840-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种用于研究波底边界层质量和动量传递的振荡边界层装置(OBLA)。该设备的设计可对近底浅水轨道速度进行全比例物理建模。PIV/PLIF 系统可同时解析波纹内速度场和染料浓度场。我们通过在波纹边界的波谷和波峰注入染料来研究两种情况。在波谷和波峰情况下,羽流的范围分别在自由流速度的零交叉点附近和40(^\circ\)之后最大。两种情况都显示出周期性的湍流涡旋结构影响了相平均浓度羽流。当归一化浓度大于 0.01 时,两种情况下的羽流都停留在边界层内,并移动了半个波纹长度。染料分别从波峰和波谷源垂直向上扩散约 2 个和 1.5 个波纹高度。在波峰上观察到的吸附作用更强,而且明显取决于床形的不对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous velocity and concentration measurements over a rippled boundary subjected to oscillating fluid forcing

Simultaneous velocity and concentration measurements over a rippled boundary subjected to oscillating fluid forcing

Simultaneous velocity and concentration measurements over a rippled boundary subjected to oscillating fluid forcing

We describe an oscillating boundary layer apparatus (OBLA) to investigate mass and momentum transfer in the wave bottom boundary layer. The facility is designed such that near-bed shallow water orbital velocities are physically modeled in full scale. A PIV/PLIF system allows for simultaneously resolving the intra-ripple velocity and dye concentration fields. We examine two cases by injecting dye at the trough and crest of the rippled boundary. The extent of the plume is the largest near the zero-crossing of the free-stream velocity and 40\(^\circ\) later for the trough and crest case, respectively. Both cases showed periodic turbulent vortical structures influencing the phase-averaged concentration plumes. For normalized concentrations greater than 0.01, the plumes remained within the boundary layer and traveled half a ripple length for both cases. Dye spread vertically upward about 2 and 1.5 ripple heights from the crest and trough sources, respectively. Stronger advection was observed over the crests, along with a clear dependence on bedform asymmetry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信