{"title":"用电阻率法评估地下土壤特性,以确定在地基复杂地形中拟建庄园对工程、地下水和环境的影响--尼日利亚西南部的案例研究","authors":"Martins Olusola Olorunfemi, Ademakinwa George Oni, Taiwo Kazeem Fadare, Oluwaseyi Emmanuel Olajuyigbe","doi":"10.1007/s12517-024-12017-z","DOIUrl":null,"url":null,"abstract":"<div><p>We present an integrated site investigation of a proposed estate with a view to generating baseline data required for safe design and construction of structures and groundwater schemes, installation and protection of utilities, and post-construction environmental issues. An electrical resistivity survey involving 1D and 2D imaging techniques was involved. The 1D resistivity imaging involved the Schlumberger Vertical Electrical Sounding (VES) with half current electrode spacing of 1–125 m, whose data were interpreted for layer resistivities and thicknesses using segment-by-segment curve matching and 1D forward modeling with W-Geosoft/WinSev 5.1 code. The 2D dipole-dipole resistivity imaging utilized 20 m dipole length and an expansion factor (<i>n</i>) ranging from 1 to 5. The 2D data were inverted to 2D resistivity images with DIPRO software. The 1D and 2D interpretation models delineated five subsurface layers comprising topsoil, fill, laterite, weathered basement, and fresh basement. The weathered basement is the main aquifer with thicknesses ranging from 11.9 to 64.4 m with prospect for groundwater development. The essentially lateritic subsoils in the upper 10 m with resistivity values generally > 450 Ωm are adjudged moderately to highly competent. The low-porosity/permeability lateritic layer overlying the weathered layer aquifer constitutes a sealant against infiltrating pollutant with the groundwater significantly protected. Except within the stream channel, the soils/subsoils are practically non-corrosive.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"17 7","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of subsoil characteristics by electrical resistivity method for engineering, groundwater and environmental impact at a proposed estate in a basement complex terrain—a case study from Southwestern Nigeria\",\"authors\":\"Martins Olusola Olorunfemi, Ademakinwa George Oni, Taiwo Kazeem Fadare, Oluwaseyi Emmanuel Olajuyigbe\",\"doi\":\"10.1007/s12517-024-12017-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an integrated site investigation of a proposed estate with a view to generating baseline data required for safe design and construction of structures and groundwater schemes, installation and protection of utilities, and post-construction environmental issues. An electrical resistivity survey involving 1D and 2D imaging techniques was involved. The 1D resistivity imaging involved the Schlumberger Vertical Electrical Sounding (VES) with half current electrode spacing of 1–125 m, whose data were interpreted for layer resistivities and thicknesses using segment-by-segment curve matching and 1D forward modeling with W-Geosoft/WinSev 5.1 code. The 2D dipole-dipole resistivity imaging utilized 20 m dipole length and an expansion factor (<i>n</i>) ranging from 1 to 5. The 2D data were inverted to 2D resistivity images with DIPRO software. The 1D and 2D interpretation models delineated five subsurface layers comprising topsoil, fill, laterite, weathered basement, and fresh basement. The weathered basement is the main aquifer with thicknesses ranging from 11.9 to 64.4 m with prospect for groundwater development. The essentially lateritic subsoils in the upper 10 m with resistivity values generally > 450 Ωm are adjudged moderately to highly competent. The low-porosity/permeability lateritic layer overlying the weathered layer aquifer constitutes a sealant against infiltrating pollutant with the groundwater significantly protected. Except within the stream channel, the soils/subsoils are practically non-corrosive.</p></div>\",\"PeriodicalId\":476,\"journal\":{\"name\":\"Arabian Journal of Geosciences\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8270,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12517-024-12017-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12017-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Assessment of subsoil characteristics by electrical resistivity method for engineering, groundwater and environmental impact at a proposed estate in a basement complex terrain—a case study from Southwestern Nigeria
We present an integrated site investigation of a proposed estate with a view to generating baseline data required for safe design and construction of structures and groundwater schemes, installation and protection of utilities, and post-construction environmental issues. An electrical resistivity survey involving 1D and 2D imaging techniques was involved. The 1D resistivity imaging involved the Schlumberger Vertical Electrical Sounding (VES) with half current electrode spacing of 1–125 m, whose data were interpreted for layer resistivities and thicknesses using segment-by-segment curve matching and 1D forward modeling with W-Geosoft/WinSev 5.1 code. The 2D dipole-dipole resistivity imaging utilized 20 m dipole length and an expansion factor (n) ranging from 1 to 5. The 2D data were inverted to 2D resistivity images with DIPRO software. The 1D and 2D interpretation models delineated five subsurface layers comprising topsoil, fill, laterite, weathered basement, and fresh basement. The weathered basement is the main aquifer with thicknesses ranging from 11.9 to 64.4 m with prospect for groundwater development. The essentially lateritic subsoils in the upper 10 m with resistivity values generally > 450 Ωm are adjudged moderately to highly competent. The low-porosity/permeability lateritic layer overlying the weathered layer aquifer constitutes a sealant against infiltrating pollutant with the groundwater significantly protected. Except within the stream channel, the soils/subsoils are practically non-corrosive.
期刊介绍:
The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone.
Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.