{"title":"3D-Mol:利用三维信息进行分子特性预测的新型对比学习框架","authors":"Taojie Kuang, Yiming Ren, Zhixiang Ren","doi":"10.1007/s10044-024-01287-8","DOIUrl":null,"url":null,"abstract":"<p>Molecular property prediction, crucial for early drug candidate screening and optimization, has seen advancements with deep learning-based methods. While deep learning-based methods have advanced considerably, they often fall short in fully leveraging 3D spatial information. Specifically, current molecular encoding techniques tend to inadequately extract spatial information, leading to ambiguous representations where a single one might represent multiple distinct molecules. Moreover, existing molecular modeling methods focus predominantly on the most stable 3D conformations, neglecting other viable conformations present in reality. To address these issues, we propose 3D-Mol, a novel approach designed for more accurate spatial structure representation. It deconstructs molecules into three hierarchical graphs to better extract geometric information. Additionally, 3D-Mol leverages contrastive learning for pretraining on 20 million unlabeled data, treating their conformations with identical topological structures as weighted positive pairs and contrasting ones as negatives, based on the similarity of their 3D conformation descriptors and fingerprints. We compare 3D-Mol with various state-of-the-art baselines on 7 benchmarks and demonstrate our outstanding performance.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"80 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information\",\"authors\":\"Taojie Kuang, Yiming Ren, Zhixiang Ren\",\"doi\":\"10.1007/s10044-024-01287-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular property prediction, crucial for early drug candidate screening and optimization, has seen advancements with deep learning-based methods. While deep learning-based methods have advanced considerably, they often fall short in fully leveraging 3D spatial information. Specifically, current molecular encoding techniques tend to inadequately extract spatial information, leading to ambiguous representations where a single one might represent multiple distinct molecules. Moreover, existing molecular modeling methods focus predominantly on the most stable 3D conformations, neglecting other viable conformations present in reality. To address these issues, we propose 3D-Mol, a novel approach designed for more accurate spatial structure representation. It deconstructs molecules into three hierarchical graphs to better extract geometric information. Additionally, 3D-Mol leverages contrastive learning for pretraining on 20 million unlabeled data, treating their conformations with identical topological structures as weighted positive pairs and contrasting ones as negatives, based on the similarity of their 3D conformation descriptors and fingerprints. We compare 3D-Mol with various state-of-the-art baselines on 7 benchmarks and demonstrate our outstanding performance.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01287-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01287-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Molecular property prediction, crucial for early drug candidate screening and optimization, has seen advancements with deep learning-based methods. While deep learning-based methods have advanced considerably, they often fall short in fully leveraging 3D spatial information. Specifically, current molecular encoding techniques tend to inadequately extract spatial information, leading to ambiguous representations where a single one might represent multiple distinct molecules. Moreover, existing molecular modeling methods focus predominantly on the most stable 3D conformations, neglecting other viable conformations present in reality. To address these issues, we propose 3D-Mol, a novel approach designed for more accurate spatial structure representation. It deconstructs molecules into three hierarchical graphs to better extract geometric information. Additionally, 3D-Mol leverages contrastive learning for pretraining on 20 million unlabeled data, treating their conformations with identical topological structures as weighted positive pairs and contrasting ones as negatives, based on the similarity of their 3D conformation descriptors and fingerprints. We compare 3D-Mol with various state-of-the-art baselines on 7 benchmarks and demonstrate our outstanding performance.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.