随机 Floquet-East 模型动力学的精确结果

Cecilia De Fazio, Juan P. Garrahan, Katja Klobas
{"title":"随机 Floquet-East 模型动力学的精确结果","authors":"Cecilia De Fazio, Juan P. Garrahan, Katja Klobas","doi":"arxiv-2406.17464","DOIUrl":null,"url":null,"abstract":"We introduce a stochastic generalisation of the classical deterministic\nFloquet-East model, a discrete circuit with the same kinetic constraint as the\nEast model of glasses. We prove exactly that, in the limit of long time and\nlarge size, this model has a large deviation phase transition between active\nand inactive dynamical phases. We also compute the finite time and size scaling\nof general space-time fluctuations, which for the case of inactive regions\ngives rise to dynamical hydrophobicity. We also discuss how, through the\nTrotter limit, these exact results also hold for the continuous-time East\nmodel, thus proving long-standing observations in kinetically constrained\nmodels. Our results here illustrate the applicability of exact tensor network\nmethods for solving problems in many-body stochastic systems.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact results on the dynamics of the stochastic Floquet-East model\",\"authors\":\"Cecilia De Fazio, Juan P. Garrahan, Katja Klobas\",\"doi\":\"arxiv-2406.17464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a stochastic generalisation of the classical deterministic\\nFloquet-East model, a discrete circuit with the same kinetic constraint as the\\nEast model of glasses. We prove exactly that, in the limit of long time and\\nlarge size, this model has a large deviation phase transition between active\\nand inactive dynamical phases. We also compute the finite time and size scaling\\nof general space-time fluctuations, which for the case of inactive regions\\ngives rise to dynamical hydrophobicity. We also discuss how, through the\\nTrotter limit, these exact results also hold for the continuous-time East\\nmodel, thus proving long-standing observations in kinetically constrained\\nmodels. Our results here illustrate the applicability of exact tensor network\\nmethods for solving problems in many-body stochastic systems.\",\"PeriodicalId\":501231,\"journal\":{\"name\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cellular Automata and Lattice Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.17464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了经典确定性弗洛塞特-伊斯特模型的随机广义,这是一个与玻璃的伊斯特模型具有相同动力学约束的离散回路。我们精确地证明,在长时间和大尺寸的极限条件下,该模型在活跃和不活跃的动力学阶段之间存在大偏差相变。我们还计算了一般时空波动的有限时间和尺寸标度,这在不活跃区域的情况下产生了动力学疏水性。我们还讨论了如何通过特罗特极限(Trotter limit),使这些精确结果同样适用于连续时间东模型(Eastmodel),从而证明了在动力学约束模型中长期存在的观察结果。我们的结果说明了精确张量网络方法在多体随机系统问题求解中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact results on the dynamics of the stochastic Floquet-East model
We introduce a stochastic generalisation of the classical deterministic Floquet-East model, a discrete circuit with the same kinetic constraint as the East model of glasses. We prove exactly that, in the limit of long time and large size, this model has a large deviation phase transition between active and inactive dynamical phases. We also compute the finite time and size scaling of general space-time fluctuations, which for the case of inactive regions gives rise to dynamical hydrophobicity. We also discuss how, through the Trotter limit, these exact results also hold for the continuous-time East model, thus proving long-standing observations in kinetically constrained models. Our results here illustrate the applicability of exact tensor network methods for solving problems in many-body stochastic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信