Biyuan Yao, Qingchen Zhang, Ruonan Feng, Xiaokang Wang
{"title":"基于系统响应曲线的网络物理社会智能一阶优化算法","authors":"Biyuan Yao, Qingchen Zhang, Ruonan Feng, Xiaokang Wang","doi":"10.1002/cpe.8197","DOIUrl":null,"url":null,"abstract":"<p>The continuous enhancement of optimization algorithms and their parameters has spurred the expansion of AI into novel application domains such as image recognition and smart home technology. This paper employs the system response curve (SRC) to the adaptive learning rate optimizer, addressing challenges associated with the establishment of the optimizer control model and parameter adjustments affecting the dynamic performance of the system. These insights offer theoretical support for the optimizer's application in deep learning models. To begin, the adaptive learning rate optimizer is a time-varying system. Based on the intrinsic relationship between the network optimization and the control system, the time domain expression and approximate transfer function of the adaptive learning rate optimizer are derived, and the system dynamic model is established. Furthermore, based on the system control model of the optimizer, it is proposed to explain the performance impacts of different optimizers and their hyperparameters on the deep learning model through the SRC. Finally, experiments are performed on the MNIST, CIFAR-10, UTKinect-Action3D, and Florence3D-Action datasets to validate the control theory of explaining optimizers through system response curves. The experimental results show that the recognition performance of the Adaptive Moment Estimate (Adam) is better than that of the Adaptive Gradient (AdaGrad) and Root Mean Square Propagation (RMSprop). Additionally, the learning rate affects the model training speed, and the practical application aligns with the theoretical analysis.</p>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 21","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System response curve based first-order optimization algorithms for cyber-physical-social intelligence\",\"authors\":\"Biyuan Yao, Qingchen Zhang, Ruonan Feng, Xiaokang Wang\",\"doi\":\"10.1002/cpe.8197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The continuous enhancement of optimization algorithms and their parameters has spurred the expansion of AI into novel application domains such as image recognition and smart home technology. This paper employs the system response curve (SRC) to the adaptive learning rate optimizer, addressing challenges associated with the establishment of the optimizer control model and parameter adjustments affecting the dynamic performance of the system. These insights offer theoretical support for the optimizer's application in deep learning models. To begin, the adaptive learning rate optimizer is a time-varying system. Based on the intrinsic relationship between the network optimization and the control system, the time domain expression and approximate transfer function of the adaptive learning rate optimizer are derived, and the system dynamic model is established. Furthermore, based on the system control model of the optimizer, it is proposed to explain the performance impacts of different optimizers and their hyperparameters on the deep learning model through the SRC. Finally, experiments are performed on the MNIST, CIFAR-10, UTKinect-Action3D, and Florence3D-Action datasets to validate the control theory of explaining optimizers through system response curves. The experimental results show that the recognition performance of the Adaptive Moment Estimate (Adam) is better than that of the Adaptive Gradient (AdaGrad) and Root Mean Square Propagation (RMSprop). Additionally, the learning rate affects the model training speed, and the practical application aligns with the theoretical analysis.</p>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"36 21\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8197\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8197","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
System response curve based first-order optimization algorithms for cyber-physical-social intelligence
The continuous enhancement of optimization algorithms and their parameters has spurred the expansion of AI into novel application domains such as image recognition and smart home technology. This paper employs the system response curve (SRC) to the adaptive learning rate optimizer, addressing challenges associated with the establishment of the optimizer control model and parameter adjustments affecting the dynamic performance of the system. These insights offer theoretical support for the optimizer's application in deep learning models. To begin, the adaptive learning rate optimizer is a time-varying system. Based on the intrinsic relationship between the network optimization and the control system, the time domain expression and approximate transfer function of the adaptive learning rate optimizer are derived, and the system dynamic model is established. Furthermore, based on the system control model of the optimizer, it is proposed to explain the performance impacts of different optimizers and their hyperparameters on the deep learning model through the SRC. Finally, experiments are performed on the MNIST, CIFAR-10, UTKinect-Action3D, and Florence3D-Action datasets to validate the control theory of explaining optimizers through system response curves. The experimental results show that the recognition performance of the Adaptive Moment Estimate (Adam) is better than that of the Adaptive Gradient (AdaGrad) and Root Mean Square Propagation (RMSprop). Additionally, the learning rate affects the model training speed, and the practical application aligns with the theoretical analysis.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.