高效、低成本的单步薄层氧化锌纳米结构可增强镀锌钢的防腐性能

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ashok Kumar Gupta, Natasha Mandal, Suryakanta Nayak, Rakesh S. Moirangthem, Suryanarayana Reddy Minnam Reddy, Amar Nath Bhagat, Tapan Kumar Rout
{"title":"高效、低成本的单步薄层氧化锌纳米结构可增强镀锌钢的防腐性能","authors":"Ashok Kumar Gupta,&nbsp;Natasha Mandal,&nbsp;Suryakanta Nayak,&nbsp;Rakesh S. Moirangthem,&nbsp;Suryanarayana Reddy Minnam Reddy,&nbsp;Amar Nath Bhagat,&nbsp;Tapan Kumar Rout","doi":"10.1007/s12540-024-01704-x","DOIUrl":null,"url":null,"abstract":"<div><p>We present a simple, direct, one-step method for obtaining a hydrophobic ZnO nanostructure coating to prevent zinc oxidation (white rust). The corrosion resistance of ZnO nanostructure-coated galvanized steel (GI) was studied using the well-known electrochemical impedance spectroscopy (EIS) technique in a 3.5 wt% aqueous NaCl electrolyte solution. Through the thermal decomposition of zinc acetate dihydrate, a thin film of ZnO nanostructure was grown on top of the GI substrate. All specimens were characterized using FESEM, EDS, and XRD following GI surface modification with ZnO nanostructures. The wettability of the nanostructure-modified GI surface was also investigated using the contact angle method. In a 3.5 wt% aqueous NaCl solution, the ZnO nanostructure coating was more resistant to corrosion than the neat GI substrate. In an aqueous corrosive electrolyte medium, we observed ZnO nanostructures forming a hydrophobic surface on a GI substrate. This hydrophobic thin film coating of ZnO nanostructures is an excellent alternative for protecting the surface of GI substrates; thus, it can eliminate toxic material based coatings on GI substrates.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 11","pages":"3045 - 3055"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Cost-Effective Single-Step Thin Overlay Zinc Oxide Nanostructure for Enhanced Corrosion Protection of Galvanized Steel\",\"authors\":\"Ashok Kumar Gupta,&nbsp;Natasha Mandal,&nbsp;Suryakanta Nayak,&nbsp;Rakesh S. Moirangthem,&nbsp;Suryanarayana Reddy Minnam Reddy,&nbsp;Amar Nath Bhagat,&nbsp;Tapan Kumar Rout\",\"doi\":\"10.1007/s12540-024-01704-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a simple, direct, one-step method for obtaining a hydrophobic ZnO nanostructure coating to prevent zinc oxidation (white rust). The corrosion resistance of ZnO nanostructure-coated galvanized steel (GI) was studied using the well-known electrochemical impedance spectroscopy (EIS) technique in a 3.5 wt% aqueous NaCl electrolyte solution. Through the thermal decomposition of zinc acetate dihydrate, a thin film of ZnO nanostructure was grown on top of the GI substrate. All specimens were characterized using FESEM, EDS, and XRD following GI surface modification with ZnO nanostructures. The wettability of the nanostructure-modified GI surface was also investigated using the contact angle method. In a 3.5 wt% aqueous NaCl solution, the ZnO nanostructure coating was more resistant to corrosion than the neat GI substrate. In an aqueous corrosive electrolyte medium, we observed ZnO nanostructures forming a hydrophobic surface on a GI substrate. This hydrophobic thin film coating of ZnO nanostructures is an excellent alternative for protecting the surface of GI substrates; thus, it can eliminate toxic material based coatings on GI substrates.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"30 11\",\"pages\":\"3045 - 3055\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01704-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01704-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种简单、直接、一步法获得疏水性 ZnO 纳米结构涂层以防止锌氧化(白锈)的方法。我们采用著名的电化学阻抗谱(EIS)技术,在 3.5 wt% 的氯化钠电解质水溶液中研究了 ZnO 纳米结构涂层镀锌钢(GI)的耐腐蚀性。通过二水醋酸锌的热分解,在 GI 基底上生长出了一层 ZnO 纳米结构薄膜。在用氧化锌纳米结构对 GI 表面进行改性后,使用 FESEM、EDS 和 XRD 对所有试样进行了表征。此外,还使用接触角法研究了纳米结构修饰的 GI 表面的润湿性。在 3.5 wt% 的氯化钠水溶液中,氧化锌纳米结构涂层的耐腐蚀性比纯净的 GI 基底更强。在腐蚀性电解质水溶液中,我们观察到氧化锌纳米结构在 GI 基底上形成了疏水表面。这种 ZnO 纳米结构疏水薄膜涂层是保护 GI 基材表面的极佳替代品;因此,它可以消除 GI 基材上基于有毒材料的涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient and Cost-Effective Single-Step Thin Overlay Zinc Oxide Nanostructure for Enhanced Corrosion Protection of Galvanized Steel

Efficient and Cost-Effective Single-Step Thin Overlay Zinc Oxide Nanostructure for Enhanced Corrosion Protection of Galvanized Steel

Efficient and Cost-Effective Single-Step Thin Overlay Zinc Oxide Nanostructure for Enhanced Corrosion Protection of Galvanized Steel

We present a simple, direct, one-step method for obtaining a hydrophobic ZnO nanostructure coating to prevent zinc oxidation (white rust). The corrosion resistance of ZnO nanostructure-coated galvanized steel (GI) was studied using the well-known electrochemical impedance spectroscopy (EIS) technique in a 3.5 wt% aqueous NaCl electrolyte solution. Through the thermal decomposition of zinc acetate dihydrate, a thin film of ZnO nanostructure was grown on top of the GI substrate. All specimens were characterized using FESEM, EDS, and XRD following GI surface modification with ZnO nanostructures. The wettability of the nanostructure-modified GI surface was also investigated using the contact angle method. In a 3.5 wt% aqueous NaCl solution, the ZnO nanostructure coating was more resistant to corrosion than the neat GI substrate. In an aqueous corrosive electrolyte medium, we observed ZnO nanostructures forming a hydrophobic surface on a GI substrate. This hydrophobic thin film coating of ZnO nanostructures is an excellent alternative for protecting the surface of GI substrates; thus, it can eliminate toxic material based coatings on GI substrates.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信