Hayeon Jo, Benny Ryplida, Kaustuv Roy, Sung Young Park
{"title":"可触摸导电水凝胶的癌症细胞内外微环境响应电信号","authors":"Hayeon Jo, Benny Ryplida, Kaustuv Roy, Sung Young Park","doi":"10.1016/j.jiec.2024.06.027","DOIUrl":null,"url":null,"abstract":"A wireless-integrated tumor microenvironment-responsive sensor designed from diselenide-functionalized carbon dot (dsCD) and hyaluronic acid polymer dot (PD(HA)) loaded in a mineralized conductive hydrogel (dsCD-PD(HA) Hydrogel) for detecting cellular reactive oxygen species (ROS) and pH detection. The manufactured ROS/pH responsive conductive hydrogel efficiently differentiated between cancer cells and normal cells in response to cellular factors through changes in fluorescence, electrical and mechanical response. Tumor microenvironment acidity and high ROS concentrations caused fluorescence recovery boronate ester and diselenide bond cleavage alongside a change in electrical resistivity from 78.9 kΩ (pH 7.4) to 38.8 kΩ (0.1 mM HO/pH 6.8) due to disintegration of molecular interaction in the sensor. In vitro electrochemical analysis revealed different ΔR/R bending profiles between cancer (26.2 % and 25.9 % for HeLa and PC-3, respectively) and normal cells (17.9 %), alongside the optical performance demonstrating higher regain of fluorescence of cancer cells (HeLa and PC-3) compared to the normal cells (CHO-K1). Additionally, the dsCD-PD(HA) Hydrogel demonstrated favorable biocompatibility and ROS scavenging, with selective targeting of cancer cells. A wireless sensing platform was developed by connecting the dsCD-PD(HA) Hydrogel sensor to a smartphone, showing a precise signal during detection resistance or electro-mechanical signals.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"77 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer intra and extracellular microenvironment-responsive electrical signal of touchable conductive hydrogel\",\"authors\":\"Hayeon Jo, Benny Ryplida, Kaustuv Roy, Sung Young Park\",\"doi\":\"10.1016/j.jiec.2024.06.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wireless-integrated tumor microenvironment-responsive sensor designed from diselenide-functionalized carbon dot (dsCD) and hyaluronic acid polymer dot (PD(HA)) loaded in a mineralized conductive hydrogel (dsCD-PD(HA) Hydrogel) for detecting cellular reactive oxygen species (ROS) and pH detection. The manufactured ROS/pH responsive conductive hydrogel efficiently differentiated between cancer cells and normal cells in response to cellular factors through changes in fluorescence, electrical and mechanical response. Tumor microenvironment acidity and high ROS concentrations caused fluorescence recovery boronate ester and diselenide bond cleavage alongside a change in electrical resistivity from 78.9 kΩ (pH 7.4) to 38.8 kΩ (0.1 mM HO/pH 6.8) due to disintegration of molecular interaction in the sensor. In vitro electrochemical analysis revealed different ΔR/R bending profiles between cancer (26.2 % and 25.9 % for HeLa and PC-3, respectively) and normal cells (17.9 %), alongside the optical performance demonstrating higher regain of fluorescence of cancer cells (HeLa and PC-3) compared to the normal cells (CHO-K1). Additionally, the dsCD-PD(HA) Hydrogel demonstrated favorable biocompatibility and ROS scavenging, with selective targeting of cancer cells. A wireless sensing platform was developed by connecting the dsCD-PD(HA) Hydrogel sensor to a smartphone, showing a precise signal during detection resistance or electro-mechanical signals.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.06.027\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.06.027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cancer intra and extracellular microenvironment-responsive electrical signal of touchable conductive hydrogel
A wireless-integrated tumor microenvironment-responsive sensor designed from diselenide-functionalized carbon dot (dsCD) and hyaluronic acid polymer dot (PD(HA)) loaded in a mineralized conductive hydrogel (dsCD-PD(HA) Hydrogel) for detecting cellular reactive oxygen species (ROS) and pH detection. The manufactured ROS/pH responsive conductive hydrogel efficiently differentiated between cancer cells and normal cells in response to cellular factors through changes in fluorescence, electrical and mechanical response. Tumor microenvironment acidity and high ROS concentrations caused fluorescence recovery boronate ester and diselenide bond cleavage alongside a change in electrical resistivity from 78.9 kΩ (pH 7.4) to 38.8 kΩ (0.1 mM HO/pH 6.8) due to disintegration of molecular interaction in the sensor. In vitro electrochemical analysis revealed different ΔR/R bending profiles between cancer (26.2 % and 25.9 % for HeLa and PC-3, respectively) and normal cells (17.9 %), alongside the optical performance demonstrating higher regain of fluorescence of cancer cells (HeLa and PC-3) compared to the normal cells (CHO-K1). Additionally, the dsCD-PD(HA) Hydrogel demonstrated favorable biocompatibility and ROS scavenging, with selective targeting of cancer cells. A wireless sensing platform was developed by connecting the dsCD-PD(HA) Hydrogel sensor to a smartphone, showing a precise signal during detection resistance or electro-mechanical signals.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.