Flávia C. Marques, Erix A. Milán-Garcés, Vanessa E. de Oliveira, Stéfanos L. Georgopoulos, Gustavo F. S. Andrade, Luiz Fernando C. de Oliveira
{"title":"方酸顺式(二氰基亚甲基)离子在银基底上的表面增强拉曼散射","authors":"Flávia C. Marques, Erix A. Milán-Garcés, Vanessa E. de Oliveira, Stéfanos L. Georgopoulos, Gustavo F. S. Andrade, Luiz Fernando C. de Oliveira","doi":"10.1002/jrs.6716","DOIUrl":null,"url":null,"abstract":"<p>There has been increasing interest in the use of squaraines with different physicochemical properties. However, their applications in nanoplasmonics are limited. For that, detailed information on the interactions of squaraines with plasmonic nanostructures is required. In this work, we have studied the adsorption of the squaraine cis-dicyanomethylene squarate (CDSQ) on the surface of Ag nanoparticles (AgNP). We have combined normal Raman, surface-enhanced Raman scattering (SERS), and DFT calculations to get insights into the configuration of its adsorption. DFT calculations have been carried out using simplified models of different adsorption geometries for comparison with the results of the SERS experiments. A comparison between the relative intensities of the normal Raman and SERS spectra indicates that CDSQ is adsorbed perpendicular to the AgNP surface. The predicted spectra suggest that CDSQ is chemically adsorbed on the silver surface through one of its N atoms.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"55 10","pages":"1031-1043"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-enhanced Raman scattering of Cis-(dicyanomethylene) squarate ion on a silver substrate\",\"authors\":\"Flávia C. Marques, Erix A. Milán-Garcés, Vanessa E. de Oliveira, Stéfanos L. Georgopoulos, Gustavo F. S. Andrade, Luiz Fernando C. de Oliveira\",\"doi\":\"10.1002/jrs.6716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There has been increasing interest in the use of squaraines with different physicochemical properties. However, their applications in nanoplasmonics are limited. For that, detailed information on the interactions of squaraines with plasmonic nanostructures is required. In this work, we have studied the adsorption of the squaraine cis-dicyanomethylene squarate (CDSQ) on the surface of Ag nanoparticles (AgNP). We have combined normal Raman, surface-enhanced Raman scattering (SERS), and DFT calculations to get insights into the configuration of its adsorption. DFT calculations have been carried out using simplified models of different adsorption geometries for comparison with the results of the SERS experiments. A comparison between the relative intensities of the normal Raman and SERS spectra indicates that CDSQ is adsorbed perpendicular to the AgNP surface. The predicted spectra suggest that CDSQ is chemically adsorbed on the silver surface through one of its N atoms.</p>\",\"PeriodicalId\":16926,\"journal\":{\"name\":\"Journal of Raman Spectroscopy\",\"volume\":\"55 10\",\"pages\":\"1031-1043\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Raman Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6716\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6716","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Surface-enhanced Raman scattering of Cis-(dicyanomethylene) squarate ion on a silver substrate
There has been increasing interest in the use of squaraines with different physicochemical properties. However, their applications in nanoplasmonics are limited. For that, detailed information on the interactions of squaraines with plasmonic nanostructures is required. In this work, we have studied the adsorption of the squaraine cis-dicyanomethylene squarate (CDSQ) on the surface of Ag nanoparticles (AgNP). We have combined normal Raman, surface-enhanced Raman scattering (SERS), and DFT calculations to get insights into the configuration of its adsorption. DFT calculations have been carried out using simplified models of different adsorption geometries for comparison with the results of the SERS experiments. A comparison between the relative intensities of the normal Raman and SERS spectra indicates that CDSQ is adsorbed perpendicular to the AgNP surface. The predicted spectra suggest that CDSQ is chemically adsorbed on the silver surface through one of its N atoms.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.