{"title":"采用 CEEMDAN 去噪方法实地部署天然气管道预报系统","authors":"Jun Li;Ruixu Yao","doi":"10.1109/JPHOT.2024.3421275","DOIUrl":null,"url":null,"abstract":"This work utilizes the CEEMDAN algorithm to analyze the interference of Rayleigh back-scattering signals in standard communication optical fibers. The technology has several advantages, such as anti-electromagnetic interference, improved electrical insulation, corrosion resistance, higher sensitivity, and the capability for long-distance monitoring. In this study, in-situ monitoring data from a 53.2 km natural gas pipeline in a terrain area in Southwest China were analyzed. The results demonstrate that, using the CEEMDAN algorithm for a blind test conducted over fourteen days, a 100% recognition accuracy for mechanical tamping and a Nuisance Alarm Rate (NAR) of less than 1% were achieved.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10578009","citationCount":"0","resultStr":"{\"title\":\"Field Deployment of Natural Gas Pipeline Pre-Warning System With CEEMDAN Denoising Method\",\"authors\":\"Jun Li;Ruixu Yao\",\"doi\":\"10.1109/JPHOT.2024.3421275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work utilizes the CEEMDAN algorithm to analyze the interference of Rayleigh back-scattering signals in standard communication optical fibers. The technology has several advantages, such as anti-electromagnetic interference, improved electrical insulation, corrosion resistance, higher sensitivity, and the capability for long-distance monitoring. In this study, in-situ monitoring data from a 53.2 km natural gas pipeline in a terrain area in Southwest China were analyzed. The results demonstrate that, using the CEEMDAN algorithm for a blind test conducted over fourteen days, a 100% recognition accuracy for mechanical tamping and a Nuisance Alarm Rate (NAR) of less than 1% were achieved.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 4\",\"pages\":\"1-8\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10578009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10578009/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10578009/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Field Deployment of Natural Gas Pipeline Pre-Warning System With CEEMDAN Denoising Method
This work utilizes the CEEMDAN algorithm to analyze the interference of Rayleigh back-scattering signals in standard communication optical fibers. The technology has several advantages, such as anti-electromagnetic interference, improved electrical insulation, corrosion resistance, higher sensitivity, and the capability for long-distance monitoring. In this study, in-situ monitoring data from a 53.2 km natural gas pipeline in a terrain area in Southwest China were analyzed. The results demonstrate that, using the CEEMDAN algorithm for a blind test conducted over fourteen days, a 100% recognition accuracy for mechanical tamping and a Nuisance Alarm Rate (NAR) of less than 1% were achieved.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.