基于深度学习的双光子聚合自动质量检测和印刷优化的双重视觉检测

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ningning Hu, Lujia Ding, Lijun Men, Wenju Zhou, Wenjun Zhang, Ruixue Yin
{"title":"基于深度学习的双光子聚合自动质量检测和印刷优化的双重视觉检测","authors":"Ningning Hu, Lujia Ding, Lijun Men, Wenju Zhou, Wenjun Zhang, Ruixue Yin","doi":"10.1007/s10845-024-02417-z","DOIUrl":null,"url":null,"abstract":"<p>Two-photon polymerization (TPP) has emerged as an advanced additive manufacturing technique, allowing for the creation of three-dimensional micro-nano structures with high precision based on two-photon absorption principle. Precisely control light dosage determined by the printing parameters, is crucial for inducing photopolymerization across different photocurable materials and various structures. To address the challenges of parameter optimization, deep learning models were employed to quickly obtained the ideal printing parameters through automated visual inspection during TPP printing process and after post-processing. A dataset was collected from the video recordings during printing process and the images obtained from after post-processing of samples. Data augmentation techniques were applied to enhance the dataset. For the TPP printing process, the mean prediction accuracy increasing from 95.1% to 96.8% for the 3D-CNN model and from 95.4% to 97.8% for the CNN-LSTM model. For the post-processing, the mean prediction accuracy with CNN model increases from 94.5% to 95.2%. Consequently, spatial–temporal DL models were trained based on these datasets, and the results of dual visual inspection method demonstrated a high accuracy of 93.1% and a rapid recognition time of 48 ms. And an analysis of the failure cases of the deep learning models was conducted. Additionally, the optimal printing parameter ranges was determination for various combinations of materials and structures. This system plays a crucial role in accelerating the optimization of TPP process parameters and quality inspection, effectively addressing the challenges in the industrialization process of TPP technology.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"80 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual visual inspection for automated quality detection and printing optimization of two-photon polymerization based on deep learning\",\"authors\":\"Ningning Hu, Lujia Ding, Lijun Men, Wenju Zhou, Wenjun Zhang, Ruixue Yin\",\"doi\":\"10.1007/s10845-024-02417-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-photon polymerization (TPP) has emerged as an advanced additive manufacturing technique, allowing for the creation of three-dimensional micro-nano structures with high precision based on two-photon absorption principle. Precisely control light dosage determined by the printing parameters, is crucial for inducing photopolymerization across different photocurable materials and various structures. To address the challenges of parameter optimization, deep learning models were employed to quickly obtained the ideal printing parameters through automated visual inspection during TPP printing process and after post-processing. A dataset was collected from the video recordings during printing process and the images obtained from after post-processing of samples. Data augmentation techniques were applied to enhance the dataset. For the TPP printing process, the mean prediction accuracy increasing from 95.1% to 96.8% for the 3D-CNN model and from 95.4% to 97.8% for the CNN-LSTM model. For the post-processing, the mean prediction accuracy with CNN model increases from 94.5% to 95.2%. Consequently, spatial–temporal DL models were trained based on these datasets, and the results of dual visual inspection method demonstrated a high accuracy of 93.1% and a rapid recognition time of 48 ms. And an analysis of the failure cases of the deep learning models was conducted. Additionally, the optimal printing parameter ranges was determination for various combinations of materials and structures. This system plays a crucial role in accelerating the optimization of TPP process parameters and quality inspection, effectively addressing the challenges in the industrialization process of TPP technology.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02417-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02417-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

双光子聚合(TPP)已成为一种先进的增材制造技术,可根据双光子吸收原理制造出高精度的三维微纳结构。根据打印参数精确控制光剂量,对于诱导不同光固化材料和各种结构的光聚合至关重要。为了应对参数优化的挑战,我们采用了深度学习模型,通过在 TPP 印刷过程中和后处理后的自动视觉检测,快速获得理想的印刷参数。数据集收集自印刷过程中的视频记录和样品后处理后获得的图像。数据扩增技术用于增强数据集。在 TPP 印刷过程中,3D-CNN 模型的平均预测准确率从 95.1% 提高到 96.8%,CNN-LSTM 模型的平均预测准确率从 95.4% 提高到 97.8%。在后处理过程中,CNN 模型的平均预测准确率从 94.5% 提高到 95.2%。因此,基于这些数据集对时空 DL 模型进行了训练,双视觉检测方法的结果表明,其准确率高达 93.1%,快速识别时间为 48 毫秒。此外,还对深度学习模型的失败案例进行了分析。此外,还确定了各种材料和结构组合的最佳印刷参数范围。该系统在加速 TPP 工艺参数优化和质量检测方面发挥了重要作用,有效应对了 TPP 技术产业化过程中的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual visual inspection for automated quality detection and printing optimization of two-photon polymerization based on deep learning

Dual visual inspection for automated quality detection and printing optimization of two-photon polymerization based on deep learning

Two-photon polymerization (TPP) has emerged as an advanced additive manufacturing technique, allowing for the creation of three-dimensional micro-nano structures with high precision based on two-photon absorption principle. Precisely control light dosage determined by the printing parameters, is crucial for inducing photopolymerization across different photocurable materials and various structures. To address the challenges of parameter optimization, deep learning models were employed to quickly obtained the ideal printing parameters through automated visual inspection during TPP printing process and after post-processing. A dataset was collected from the video recordings during printing process and the images obtained from after post-processing of samples. Data augmentation techniques were applied to enhance the dataset. For the TPP printing process, the mean prediction accuracy increasing from 95.1% to 96.8% for the 3D-CNN model and from 95.4% to 97.8% for the CNN-LSTM model. For the post-processing, the mean prediction accuracy with CNN model increases from 94.5% to 95.2%. Consequently, spatial–temporal DL models were trained based on these datasets, and the results of dual visual inspection method demonstrated a high accuracy of 93.1% and a rapid recognition time of 48 ms. And an analysis of the failure cases of the deep learning models was conducted. Additionally, the optimal printing parameter ranges was determination for various combinations of materials and structures. This system plays a crucial role in accelerating the optimization of TPP process parameters and quality inspection, effectively addressing the challenges in the industrialization process of TPP technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信