{"title":"使用异构协作机器人进行人机协作模具装配的知识管理框架","authors":"Yee Yeng Liau, Kwangyeol Ryu","doi":"10.1007/s10845-024-02439-7","DOIUrl":null,"url":null,"abstract":"<p>Molds are assembled manually due to a shortage of skilled workers and challenges associated with automating operations, which arise from the low-volume, high-variety characteristics of mold production. This study proposed a human–robot collaborative mold assembly using two heterogeneous collaborative robots to address the ergonomic concerns. The use of two heterogeneous cobots enables the handling of different assembly requirements. The diversity of mold structure and different specifications of resources require comprehensive knowledge management to enable interaction and collaboration among resources. However, knowledge management in the domain of mold assembly is yet to be developed in a format understandable by both human and robots. Therefore, a framework of knowledge management is proposed to manage the knowledge within the human–robot collaboration (HRC) in a mold assembly domain. This framework includes an ontology-based decision making that utilizes outcomes from task assignment to decide the mold parts arrangement within the HRC workspace. A set of rules are modeled in the developed ontology for knowledge reasoning according to the use case of collaborative assembly of two-plate injection mold. In addition to part arrangement, the developed HRC ontology can be used to extract data and information based on user’s request and decisions, such as tool selection for subtask execution. The HRC mold assembly ontology serves as a stepping stone towards developing a context-based decision making for multi-resources HRC in future implementation.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"3 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Framework of knowledge management for human–robot collaborative mold assembly using heterogeneous cobots\",\"authors\":\"Yee Yeng Liau, Kwangyeol Ryu\",\"doi\":\"10.1007/s10845-024-02439-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molds are assembled manually due to a shortage of skilled workers and challenges associated with automating operations, which arise from the low-volume, high-variety characteristics of mold production. This study proposed a human–robot collaborative mold assembly using two heterogeneous collaborative robots to address the ergonomic concerns. The use of two heterogeneous cobots enables the handling of different assembly requirements. The diversity of mold structure and different specifications of resources require comprehensive knowledge management to enable interaction and collaboration among resources. However, knowledge management in the domain of mold assembly is yet to be developed in a format understandable by both human and robots. Therefore, a framework of knowledge management is proposed to manage the knowledge within the human–robot collaboration (HRC) in a mold assembly domain. This framework includes an ontology-based decision making that utilizes outcomes from task assignment to decide the mold parts arrangement within the HRC workspace. A set of rules are modeled in the developed ontology for knowledge reasoning according to the use case of collaborative assembly of two-plate injection mold. In addition to part arrangement, the developed HRC ontology can be used to extract data and information based on user’s request and decisions, such as tool selection for subtask execution. The HRC mold assembly ontology serves as a stepping stone towards developing a context-based decision making for multi-resources HRC in future implementation.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02439-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02439-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Framework of knowledge management for human–robot collaborative mold assembly using heterogeneous cobots
Molds are assembled manually due to a shortage of skilled workers and challenges associated with automating operations, which arise from the low-volume, high-variety characteristics of mold production. This study proposed a human–robot collaborative mold assembly using two heterogeneous collaborative robots to address the ergonomic concerns. The use of two heterogeneous cobots enables the handling of different assembly requirements. The diversity of mold structure and different specifications of resources require comprehensive knowledge management to enable interaction and collaboration among resources. However, knowledge management in the domain of mold assembly is yet to be developed in a format understandable by both human and robots. Therefore, a framework of knowledge management is proposed to manage the knowledge within the human–robot collaboration (HRC) in a mold assembly domain. This framework includes an ontology-based decision making that utilizes outcomes from task assignment to decide the mold parts arrangement within the HRC workspace. A set of rules are modeled in the developed ontology for knowledge reasoning according to the use case of collaborative assembly of two-plate injection mold. In addition to part arrangement, the developed HRC ontology can be used to extract data and information based on user’s request and decisions, such as tool selection for subtask execution. The HRC mold assembly ontology serves as a stepping stone towards developing a context-based decision making for multi-resources HRC in future implementation.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.