{"title":"青藏高原夏季大气热源对青藏高原北侧经向环流年际变化的影响","authors":"Hongyu Luo, Haipeng Yu, Zeyong Hu, Jie Zhou, Bofei Zhang, Yaoxian Yang, Shanling Cheng, Yongqi Gong, Yu Ren","doi":"10.1175/jcli-d-23-0599.1","DOIUrl":null,"url":null,"abstract":"Abstract The summer atmospheric heat source (AHS) over the Tibetan Plateau (TP) induces meridional circulations in TP and its surrounding areas. Previous studies mainly focused on the monsoon circulation on the south side of TP, while the formation and maintenance mechanisms of meridional circulation on its north side remain unclear. This study compared three calculation methods of the AHS, analyzed the spatial–temporal variability of the summer AHS over the TP, and discussed its influence on the interannual variability of meridional circulation on the north side of the TP based on the two-dimensional decomposition method of atmospheric circulation and sensitivity experiments. The results indicate that in the positive AHS anomalies years, the diabatic heating of condensation latent release in southeastern TP could motivate anomalous ascending motion. Simultaneously, the increased meridional temperature gradient between the mid- and high latitudes of East Asia leads to an enhanced southward westerly jet. In this context, the region on the north side of TP, located on the north side of the westerly jet entrance, is affected by negative anomalous relative vorticity advection, prevailing anomalous descending motion, which makes the descending branch of meridional circulation significantly presented. Unlike previous studies that considered the descending branch of meridional circulation as the compensation for upward flow, the results of the linear baroclinic model (LBM) verify that the descending branch is mainly influenced by the vorticity advection related to regional scale variability of the westerly jet. This study reveals the physical mechanism of meridional circulation on the north side of TP, which offers valuable implications for seasonal forecasting in TP and Northwest China.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"29 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the Summer Atmospheric Heat Source over the Tibetan Plateau on Interannual Variability of Meridional Circulation on the North Side of the Tibetan Plateau\",\"authors\":\"Hongyu Luo, Haipeng Yu, Zeyong Hu, Jie Zhou, Bofei Zhang, Yaoxian Yang, Shanling Cheng, Yongqi Gong, Yu Ren\",\"doi\":\"10.1175/jcli-d-23-0599.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The summer atmospheric heat source (AHS) over the Tibetan Plateau (TP) induces meridional circulations in TP and its surrounding areas. Previous studies mainly focused on the monsoon circulation on the south side of TP, while the formation and maintenance mechanisms of meridional circulation on its north side remain unclear. This study compared three calculation methods of the AHS, analyzed the spatial–temporal variability of the summer AHS over the TP, and discussed its influence on the interannual variability of meridional circulation on the north side of the TP based on the two-dimensional decomposition method of atmospheric circulation and sensitivity experiments. The results indicate that in the positive AHS anomalies years, the diabatic heating of condensation latent release in southeastern TP could motivate anomalous ascending motion. Simultaneously, the increased meridional temperature gradient between the mid- and high latitudes of East Asia leads to an enhanced southward westerly jet. In this context, the region on the north side of TP, located on the north side of the westerly jet entrance, is affected by negative anomalous relative vorticity advection, prevailing anomalous descending motion, which makes the descending branch of meridional circulation significantly presented. Unlike previous studies that considered the descending branch of meridional circulation as the compensation for upward flow, the results of the linear baroclinic model (LBM) verify that the descending branch is mainly influenced by the vorticity advection related to regional scale variability of the westerly jet. This study reveals the physical mechanism of meridional circulation on the north side of TP, which offers valuable implications for seasonal forecasting in TP and Northwest China.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0599.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0599.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Impact of the Summer Atmospheric Heat Source over the Tibetan Plateau on Interannual Variability of Meridional Circulation on the North Side of the Tibetan Plateau
Abstract The summer atmospheric heat source (AHS) over the Tibetan Plateau (TP) induces meridional circulations in TP and its surrounding areas. Previous studies mainly focused on the monsoon circulation on the south side of TP, while the formation and maintenance mechanisms of meridional circulation on its north side remain unclear. This study compared three calculation methods of the AHS, analyzed the spatial–temporal variability of the summer AHS over the TP, and discussed its influence on the interannual variability of meridional circulation on the north side of the TP based on the two-dimensional decomposition method of atmospheric circulation and sensitivity experiments. The results indicate that in the positive AHS anomalies years, the diabatic heating of condensation latent release in southeastern TP could motivate anomalous ascending motion. Simultaneously, the increased meridional temperature gradient between the mid- and high latitudes of East Asia leads to an enhanced southward westerly jet. In this context, the region on the north side of TP, located on the north side of the westerly jet entrance, is affected by negative anomalous relative vorticity advection, prevailing anomalous descending motion, which makes the descending branch of meridional circulation significantly presented. Unlike previous studies that considered the descending branch of meridional circulation as the compensation for upward flow, the results of the linear baroclinic model (LBM) verify that the descending branch is mainly influenced by the vorticity advection related to regional scale variability of the westerly jet. This study reveals the physical mechanism of meridional circulation on the north side of TP, which offers valuable implications for seasonal forecasting in TP and Northwest China.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.