{"title":"沸石/生物炭复合材料对重金属污染红壤的协同修复和改良效应的机理研究","authors":"Jing Li, Dazhong Yang, Wensong Zou, Xuezhen Feng, Ranhao Wang, Renji Zheng, Siyuan Luo, Zheting Chu, Hong Chen","doi":"10.1007/s11783-024-1874-6","DOIUrl":null,"url":null,"abstract":"<p>Red soil, the most critical soil resource in tropical/subtropical regions worldwide, faces tremendous threats, including nutrient deficiency, acidification, and heavy metal contamination. There is a great demand for multifunctional eco-materials capable of modifying this situation. Herein, we used widely distributed soil and biomass to develop a zeolite/biochar composite for synergistic red soil remediation and amendment. With the composite material, the Pb<sup>2+</sup> and Cd<sup>2+</sup> remediation efficiencies reached 92.8% and 92.9%, respectively, in stems under optimal conditions. Moreover, the acidity and nutrient deficiency conditions of red soil significantly improved. The atomic-scale interaction mechanism during the remediation and amendment process was elucidated with complementary characterization methods, which revealed that in the zeolite/biochar composite material, zeolite contributes to long-term heavy metal remediation effects. Simultaneously, biochar is responsible for soil quality amendment and short-term heavy metal remediation. Furthermore, for the first time, single-atom heavy metal ions were observed on biochar during the remediation process, indicating the broad distribution of single atoms in the natural environment.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into the synergetic remediation and amendment effects of zeolite/biochar composite on heavy metal-polluted red soil\",\"authors\":\"Jing Li, Dazhong Yang, Wensong Zou, Xuezhen Feng, Ranhao Wang, Renji Zheng, Siyuan Luo, Zheting Chu, Hong Chen\",\"doi\":\"10.1007/s11783-024-1874-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Red soil, the most critical soil resource in tropical/subtropical regions worldwide, faces tremendous threats, including nutrient deficiency, acidification, and heavy metal contamination. There is a great demand for multifunctional eco-materials capable of modifying this situation. Herein, we used widely distributed soil and biomass to develop a zeolite/biochar composite for synergistic red soil remediation and amendment. With the composite material, the Pb<sup>2+</sup> and Cd<sup>2+</sup> remediation efficiencies reached 92.8% and 92.9%, respectively, in stems under optimal conditions. Moreover, the acidity and nutrient deficiency conditions of red soil significantly improved. The atomic-scale interaction mechanism during the remediation and amendment process was elucidated with complementary characterization methods, which revealed that in the zeolite/biochar composite material, zeolite contributes to long-term heavy metal remediation effects. Simultaneously, biochar is responsible for soil quality amendment and short-term heavy metal remediation. Furthermore, for the first time, single-atom heavy metal ions were observed on biochar during the remediation process, indicating the broad distribution of single atoms in the natural environment.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1874-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1874-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Mechanistic insights into the synergetic remediation and amendment effects of zeolite/biochar composite on heavy metal-polluted red soil
Red soil, the most critical soil resource in tropical/subtropical regions worldwide, faces tremendous threats, including nutrient deficiency, acidification, and heavy metal contamination. There is a great demand for multifunctional eco-materials capable of modifying this situation. Herein, we used widely distributed soil and biomass to develop a zeolite/biochar composite for synergistic red soil remediation and amendment. With the composite material, the Pb2+ and Cd2+ remediation efficiencies reached 92.8% and 92.9%, respectively, in stems under optimal conditions. Moreover, the acidity and nutrient deficiency conditions of red soil significantly improved. The atomic-scale interaction mechanism during the remediation and amendment process was elucidated with complementary characterization methods, which revealed that in the zeolite/biochar composite material, zeolite contributes to long-term heavy metal remediation effects. Simultaneously, biochar is responsible for soil quality amendment and short-term heavy metal remediation. Furthermore, for the first time, single-atom heavy metal ions were observed on biochar during the remediation process, indicating the broad distribution of single atoms in the natural environment.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.