{"title":"通过离散拓扑优化设计各向同性超材料的有限变化敏感性分析","authors":"Daniel Candeloro Cunha, Renato Pavanello","doi":"10.1002/nme.7560","DOIUrl":null,"url":null,"abstract":"<p>This article extends recently developed finite variation sensitivity analysis (FVSA) approaches to an inverse homogenization problem. The design of metamaterials with prescribed mechanical properties is stated as a discrete density-based topology optimization problem, in which the design variables define the microstructure of the periodic base cell. The FVSA consists in estimating the finite variations of the objective and constraint functions after independently switching the state of each variable. It is used to properly linearize the functions of binary variables so the optimization problem can be solved through sequential integer linear programming. Novel sensitivity expressions were developed and it was shown that they are more accurate than the ones conventionally used in literature. Referred to as the conjugate gradient sensitivity (CGS) approach, the proposed strategy was quantitatively evaluated through numerical examples. In these examples, metamaterials with prescribed homogenized Poisson's ratios and minimal homogenized Young's moduli were obtained. A hexagonal base cell with dihedral <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>D</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {D}_3 $$</annotation>\n </semantics></math> symmetry was used to produce only metamaterials with isotropic properties. It was shown that, by using the CGS approach instead of the conventional sensitivity analysis, the sensitivity error was substantially reduced for the considered problem. The proposed developments effectively improved the stability and robustness of the discrete optimization procedures. In all the considered examples, when more accurate sensitivity analyses were performed, the parameters of the topology optimization method could be tuned more easily, yielding effective solutions even if the settings were not ideal.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite variation sensitivity analysis in the design of isotropic metamaterials through discrete topology optimization\",\"authors\":\"Daniel Candeloro Cunha, Renato Pavanello\",\"doi\":\"10.1002/nme.7560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article extends recently developed finite variation sensitivity analysis (FVSA) approaches to an inverse homogenization problem. The design of metamaterials with prescribed mechanical properties is stated as a discrete density-based topology optimization problem, in which the design variables define the microstructure of the periodic base cell. The FVSA consists in estimating the finite variations of the objective and constraint functions after independently switching the state of each variable. It is used to properly linearize the functions of binary variables so the optimization problem can be solved through sequential integer linear programming. Novel sensitivity expressions were developed and it was shown that they are more accurate than the ones conventionally used in literature. Referred to as the conjugate gradient sensitivity (CGS) approach, the proposed strategy was quantitatively evaluated through numerical examples. In these examples, metamaterials with prescribed homogenized Poisson's ratios and minimal homogenized Young's moduli were obtained. A hexagonal base cell with dihedral <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {D}_3 $$</annotation>\\n </semantics></math> symmetry was used to produce only metamaterials with isotropic properties. It was shown that, by using the CGS approach instead of the conventional sensitivity analysis, the sensitivity error was substantially reduced for the considered problem. The proposed developments effectively improved the stability and robustness of the discrete optimization procedures. In all the considered examples, when more accurate sensitivity analyses were performed, the parameters of the topology optimization method could be tuned more easily, yielding effective solutions even if the settings were not ideal.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7560\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7560","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Finite variation sensitivity analysis in the design of isotropic metamaterials through discrete topology optimization
This article extends recently developed finite variation sensitivity analysis (FVSA) approaches to an inverse homogenization problem. The design of metamaterials with prescribed mechanical properties is stated as a discrete density-based topology optimization problem, in which the design variables define the microstructure of the periodic base cell. The FVSA consists in estimating the finite variations of the objective and constraint functions after independently switching the state of each variable. It is used to properly linearize the functions of binary variables so the optimization problem can be solved through sequential integer linear programming. Novel sensitivity expressions were developed and it was shown that they are more accurate than the ones conventionally used in literature. Referred to as the conjugate gradient sensitivity (CGS) approach, the proposed strategy was quantitatively evaluated through numerical examples. In these examples, metamaterials with prescribed homogenized Poisson's ratios and minimal homogenized Young's moduli were obtained. A hexagonal base cell with dihedral symmetry was used to produce only metamaterials with isotropic properties. It was shown that, by using the CGS approach instead of the conventional sensitivity analysis, the sensitivity error was substantially reduced for the considered problem. The proposed developments effectively improved the stability and robustness of the discrete optimization procedures. In all the considered examples, when more accurate sensitivity analyses were performed, the parameters of the topology optimization method could be tuned more easily, yielding effective solutions even if the settings were not ideal.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.