{"title":"探索低维磁性多层结构中的自旋扭矩二极管效应","authors":"Rishma Thilakaraj, Kanimozhi Natarajan, Amuda Rajamani, Brinda Arumugam","doi":"10.1134/S1063783424600626","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of spin torque diode (STD) effect in a composite spin valve pillar, comprising distinct magnetic and non-magnetic layers arranged as AF/F0/NM1/F1/NM2/F2. Our investigation delves into the foundational mechanisms governing the STD effect within this magnetic multilayer system. Through the utilization of the composite spin valve pillar as a dynamic platform, we unravel the intricate interplay between spin-dependent charge transport and magnetic fields. Our inquiry is to understand diverse structural parameters, allowing us to unveil its operational capabilities and optimize its functionality across varied operating conditions. Furthermore, our exploration encompasses the quantification of detection sensitivity, scrutinizing the relationship between output voltage and applied input power. In our study, we have done an analysis of crucial parameters such as current, resistance, and sensitivity in the STD system. Our findings showcase the manifestation of the spin diode effect in low-dimensional magnetic structure. This finding indicates the feasibility of fabricating a spin diode device with diverse potential applications.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Spin Torque Diode Effect in Low Dimensional Magnetic Multilayer Structure\",\"authors\":\"Rishma Thilakaraj, Kanimozhi Natarajan, Amuda Rajamani, Brinda Arumugam\",\"doi\":\"10.1134/S1063783424600626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the impact of spin torque diode (STD) effect in a composite spin valve pillar, comprising distinct magnetic and non-magnetic layers arranged as AF/F0/NM1/F1/NM2/F2. Our investigation delves into the foundational mechanisms governing the STD effect within this magnetic multilayer system. Through the utilization of the composite spin valve pillar as a dynamic platform, we unravel the intricate interplay between spin-dependent charge transport and magnetic fields. Our inquiry is to understand diverse structural parameters, allowing us to unveil its operational capabilities and optimize its functionality across varied operating conditions. Furthermore, our exploration encompasses the quantification of detection sensitivity, scrutinizing the relationship between output voltage and applied input power. In our study, we have done an analysis of crucial parameters such as current, resistance, and sensitivity in the STD system. Our findings showcase the manifestation of the spin diode effect in low-dimensional magnetic structure. This finding indicates the feasibility of fabricating a spin diode device with diverse potential applications.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424600626\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424600626","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Exploring the Spin Torque Diode Effect in Low Dimensional Magnetic Multilayer Structure
This study investigates the impact of spin torque diode (STD) effect in a composite spin valve pillar, comprising distinct magnetic and non-magnetic layers arranged as AF/F0/NM1/F1/NM2/F2. Our investigation delves into the foundational mechanisms governing the STD effect within this magnetic multilayer system. Through the utilization of the composite spin valve pillar as a dynamic platform, we unravel the intricate interplay between spin-dependent charge transport and magnetic fields. Our inquiry is to understand diverse structural parameters, allowing us to unveil its operational capabilities and optimize its functionality across varied operating conditions. Furthermore, our exploration encompasses the quantification of detection sensitivity, scrutinizing the relationship between output voltage and applied input power. In our study, we have done an analysis of crucial parameters such as current, resistance, and sensitivity in the STD system. Our findings showcase the manifestation of the spin diode effect in low-dimensional magnetic structure. This finding indicates the feasibility of fabricating a spin diode device with diverse potential applications.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.