Krzysztof Leśniak, Nina Snigireva, Filip Strobin, Andrew Vince
{"title":"欧几里得空间上的高度非契约迭代函数系统可以有一个吸引器","authors":"Krzysztof Leśniak, Nina Snigireva, Filip Strobin, Andrew Vince","doi":"10.1007/s10884-024-10367-6","DOIUrl":null,"url":null,"abstract":"<p>Iterated function systems (IFSs) and their attractors have been central to the theory of fractal geometry almost from its inception. Moreover, contractivity of the functions in the IFS has been central to the theory of iterated functions systems. If the functions in the IFS are contractions, then the IFS is guaranteed to have a unique attractor. The converse question, does the existence of an attractor imply that the IFS is contractive, originates in a 1959 work by Bessaga which proves a converse to the contraction mapping theorem. Although a converse is true in that case, it is known that it does not always hold for an IFS. In general, there do exist IFSs with attractors and which are not contractive. However, in the context of IFSs in Euclidean space, this question has been open. In this paper we show that a highly non-contractive iterated function system in Euclidean space can have an attractor. In order to do that, we introduce the concept of an <i>L</i>-expansive map, i.e., a map that has Lipschitz constant strictly greater than one under any remetrization. This is necessitated by the absence of positively expansive maps on the interval.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Non-contractive Iterated Function Systems on Euclidean Space Can Have an Attractor\",\"authors\":\"Krzysztof Leśniak, Nina Snigireva, Filip Strobin, Andrew Vince\",\"doi\":\"10.1007/s10884-024-10367-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iterated function systems (IFSs) and their attractors have been central to the theory of fractal geometry almost from its inception. Moreover, contractivity of the functions in the IFS has been central to the theory of iterated functions systems. If the functions in the IFS are contractions, then the IFS is guaranteed to have a unique attractor. The converse question, does the existence of an attractor imply that the IFS is contractive, originates in a 1959 work by Bessaga which proves a converse to the contraction mapping theorem. Although a converse is true in that case, it is known that it does not always hold for an IFS. In general, there do exist IFSs with attractors and which are not contractive. However, in the context of IFSs in Euclidean space, this question has been open. In this paper we show that a highly non-contractive iterated function system in Euclidean space can have an attractor. In order to do that, we introduce the concept of an <i>L</i>-expansive map, i.e., a map that has Lipschitz constant strictly greater than one under any remetrization. This is necessitated by the absence of positively expansive maps on the interval.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10367-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10367-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly Non-contractive Iterated Function Systems on Euclidean Space Can Have an Attractor
Iterated function systems (IFSs) and their attractors have been central to the theory of fractal geometry almost from its inception. Moreover, contractivity of the functions in the IFS has been central to the theory of iterated functions systems. If the functions in the IFS are contractions, then the IFS is guaranteed to have a unique attractor. The converse question, does the existence of an attractor imply that the IFS is contractive, originates in a 1959 work by Bessaga which proves a converse to the contraction mapping theorem. Although a converse is true in that case, it is known that it does not always hold for an IFS. In general, there do exist IFSs with attractors and which are not contractive. However, in the context of IFSs in Euclidean space, this question has been open. In this paper we show that a highly non-contractive iterated function system in Euclidean space can have an attractor. In order to do that, we introduce the concept of an L-expansive map, i.e., a map that has Lipschitz constant strictly greater than one under any remetrization. This is necessitated by the absence of positively expansive maps on the interval.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.