一类非线性微分方程的周期性解法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huafeng Xiao, Juan Xiao, Jianshe Yu
{"title":"一类非线性微分方程的周期性解法","authors":"Huafeng Xiao, Juan Xiao, Jianshe Yu","doi":"10.1007/s10884-024-10375-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we address the existence and multiplicity of 2-periodic solutions to differential equations with a distributed delay of the form </p><span>$$\\begin{aligned} x^{\\prime }(t)=f\\Big [\\int _{t-1}^t g\\big (x(s)\\big ) d s\\Big ],\\quad x \\in \\textbf{R}^N. \\end{aligned}$$</span><p>Combining Kaplan–Yorke’s method with pseudoindex theory, we estimate the number of periodic solutions when the equations are both resonant and nonresonant. More specifically, we define two indices using asymptotic linear coefficient matrices at the origin and at infinity. Then the lower bound on the number of periodic solutions to the equations is estimated by the indices. Finally, two examples are given to illustrate our results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Solutions for a Class of Nonlinear Differential Equations\",\"authors\":\"Huafeng Xiao, Juan Xiao, Jianshe Yu\",\"doi\":\"10.1007/s10884-024-10375-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we address the existence and multiplicity of 2-periodic solutions to differential equations with a distributed delay of the form </p><span>$$\\\\begin{aligned} x^{\\\\prime }(t)=f\\\\Big [\\\\int _{t-1}^t g\\\\big (x(s)\\\\big ) d s\\\\Big ],\\\\quad x \\\\in \\\\textbf{R}^N. \\\\end{aligned}$$</span><p>Combining Kaplan–Yorke’s method with pseudoindex theory, we estimate the number of periodic solutions when the equations are both resonant and nonresonant. More specifically, we define two indices using asymptotic linear coefficient matrices at the origin and at infinity. Then the lower bound on the number of periodic solutions to the equations is estimated by the indices. Finally, two examples are given to illustrate our results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10375-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10375-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了形式为 $$$begin{aligned} x^{prime }(t)=f\Big [\int _{t-1}^t g\big (x(s)\big ) d s\Big ],\quad x \in \textbf{R}^N 的具有分布延迟的微分方程的 2 周期解的存在性和多重性。\end{aligned}$$结合卡普兰-约克方法和伪指数理论,我们可以估算出方程共振和非共振时周期解的数量。更具体地说,我们利用原点和无穷远处的渐近线性系数矩阵定义了两个指数。然后通过指数估算出方程周期解数量的下限。最后,我们给出两个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Solutions for a Class of Nonlinear Differential Equations

In this paper, we address the existence and multiplicity of 2-periodic solutions to differential equations with a distributed delay of the form

$$\begin{aligned} x^{\prime }(t)=f\Big [\int _{t-1}^t g\big (x(s)\big ) d s\Big ],\quad x \in \textbf{R}^N. \end{aligned}$$

Combining Kaplan–Yorke’s method with pseudoindex theory, we estimate the number of periodic solutions when the equations are both resonant and nonresonant. More specifically, we define two indices using asymptotic linear coefficient matrices at the origin and at infinity. Then the lower bound on the number of periodic solutions to the equations is estimated by the indices. Finally, two examples are given to illustrate our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信