Cpg 控制的气动软体机器人的多模态仿生运动分析

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yu Zhang, Peiyu Huang, Dongjie Li, Jiangyu Zhou, Yu Li, Bo You, Yanhe Zhu
{"title":"Cpg 控制的气动软体机器人的多模态仿生运动分析","authors":"Yu Zhang,&nbsp;Peiyu Huang,&nbsp;Dongjie Li,&nbsp;Jiangyu Zhou,&nbsp;Yu Li,&nbsp;Bo You,&nbsp;Yanhe Zhu","doi":"10.1007/s42235-024-00567-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper designs a soft robot with a multi-chamber, multi-airbag mimicking soft biological structure, where the airbags of the same chamber are interconnected with each other. The upper and lower chambers are separated by an intermediate layer (thin plate), which is extended and widened to achieve robot movement and balance. By applying pressure to the different chambers of the soft robot, it is possible to produce a variety of bionic movements of the inchworm and caterpillar. Due to the strong nonlinearity and infinite number of degrees of freedom properties of the material, it is impossible to obtain the analytical solution of the bending morphology and pressure of the soft robot directly. Therefore, a method to establish a mathematical model of soft robot deformation based on the classical stacked plate theory is proposed, and a chain composite model of soft robot bending motion is established based on the large-deflection modeling method. This paper proposes a method to generate a multi-mode soft robot motion control based on the Central Pattern Generator (CPG) using a single controller, which achieves the switching of sine wave-like patterns, half-wave-like patterns, and dragging patterns by adjusting frequency, amplitude and period of parameters. Finally, a pneumatic control platform is built for the validation of the theoretical model and different experimental models of the motion of the robot. And comparation of the different motion modes of the soft robot under similar non-load and load conditions.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 5","pages":"2247 - 2257"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-modal Bionic Motion Analysis of A Cpg-controlled Pneumatic Soft Robot\",\"authors\":\"Yu Zhang,&nbsp;Peiyu Huang,&nbsp;Dongjie Li,&nbsp;Jiangyu Zhou,&nbsp;Yu Li,&nbsp;Bo You,&nbsp;Yanhe Zhu\",\"doi\":\"10.1007/s42235-024-00567-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper designs a soft robot with a multi-chamber, multi-airbag mimicking soft biological structure, where the airbags of the same chamber are interconnected with each other. The upper and lower chambers are separated by an intermediate layer (thin plate), which is extended and widened to achieve robot movement and balance. By applying pressure to the different chambers of the soft robot, it is possible to produce a variety of bionic movements of the inchworm and caterpillar. Due to the strong nonlinearity and infinite number of degrees of freedom properties of the material, it is impossible to obtain the analytical solution of the bending morphology and pressure of the soft robot directly. Therefore, a method to establish a mathematical model of soft robot deformation based on the classical stacked plate theory is proposed, and a chain composite model of soft robot bending motion is established based on the large-deflection modeling method. This paper proposes a method to generate a multi-mode soft robot motion control based on the Central Pattern Generator (CPG) using a single controller, which achieves the switching of sine wave-like patterns, half-wave-like patterns, and dragging patterns by adjusting frequency, amplitude and period of parameters. Finally, a pneumatic control platform is built for the validation of the theoretical model and different experimental models of the motion of the robot. And comparation of the different motion modes of the soft robot under similar non-load and load conditions.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 5\",\"pages\":\"2247 - 2257\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00567-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00567-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种具有多腔多气囊的软体机器人,模仿软体生物结构,同一腔室的气囊相互连接。上腔和下腔之间由中间层(薄板)隔开,中间层被加长和加宽,以实现机器人的移动和平衡。通过对软体机器人的不同腔室施加压力,可以实现尺蠖和毛虫的各种仿生运动。由于材料的强非线性和无限自由度特性,无法直接获得软机器人弯曲形态和压力的解析解。因此,本文提出了一种基于经典叠板理论建立软体机器人变形数学模型的方法,并基于大挠度建模方法建立了软体机器人弯曲运动的链式复合模型。本文提出了一种基于中央模式发生器(CPG)的多模式软机器人运动控制方法,使用单个控制器,通过调整频率、振幅和周期等参数,实现正弦波样模式、半波样模式和拖曳模式的切换。最后,建立了一个气动控制平台,用于验证机器人运动的理论模型和不同的实验模型。并对软体机器人在类似非负载和负载条件下的不同运动模式进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-modal Bionic Motion Analysis of A Cpg-controlled Pneumatic Soft Robot

Multi-modal Bionic Motion Analysis of A Cpg-controlled Pneumatic Soft Robot

This paper designs a soft robot with a multi-chamber, multi-airbag mimicking soft biological structure, where the airbags of the same chamber are interconnected with each other. The upper and lower chambers are separated by an intermediate layer (thin plate), which is extended and widened to achieve robot movement and balance. By applying pressure to the different chambers of the soft robot, it is possible to produce a variety of bionic movements of the inchworm and caterpillar. Due to the strong nonlinearity and infinite number of degrees of freedom properties of the material, it is impossible to obtain the analytical solution of the bending morphology and pressure of the soft robot directly. Therefore, a method to establish a mathematical model of soft robot deformation based on the classical stacked plate theory is proposed, and a chain composite model of soft robot bending motion is established based on the large-deflection modeling method. This paper proposes a method to generate a multi-mode soft robot motion control based on the Central Pattern Generator (CPG) using a single controller, which achieves the switching of sine wave-like patterns, half-wave-like patterns, and dragging patterns by adjusting frequency, amplitude and period of parameters. Finally, a pneumatic control platform is built for the validation of the theoretical model and different experimental models of the motion of the robot. And comparation of the different motion modes of the soft robot under similar non-load and load conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信