{"title":"斯塔克尔伯格式相互依存的安全博弈:先行者优势如何影响搭便车和安全(投资不足)问题","authors":"Ziyuan Huang, Parinaz Naghizadeh, Mingyan Liu","doi":"10.1093/cybsec/tyae009","DOIUrl":null,"url":null,"abstract":"Network games are commonly used to capture the strategic interactions among interconnected agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account the mutual dependencies connecting them, which is typically obtained by solving a set of fixed point equations. Stackelberg games, on the other hand, model the sequential moves between agents that are categorized as leaders and followers. The corresponding solution concept, the subgame perfect equilibrium, is typically obtained using backward induction. Both game forms enjoy very wide use in the (cyber)security literature, the network game often as a template to study security investment and externality—also referred to as the interdependent security games—and the Stackelberg game as a formalism to model a variety of attacker–defender scenarios. In this study, we examine a model that combines both types of strategic reasoning: the interdependency as well as sequential moves. Specifically, we consider a scenario with a network of interconnected first movers (firms or defenders, whose security efforts and practices collectively determine the security posture of the eco-system) and one or more second movers, the attacker(s), who determine how much effort to exert on attacking the many potential targets. This gives rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will examine how its existence and uniqueness conditions differ from that for a standard network game. Of particular interest are comparisons between the two game forms in terms of effort exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among the defenders.","PeriodicalId":44310,"journal":{"name":"Journal of Cybersecurity","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interdependent security games in the Stackelberg style: how first-mover advantage impacts free riding and security (under-)investment\",\"authors\":\"Ziyuan Huang, Parinaz Naghizadeh, Mingyan Liu\",\"doi\":\"10.1093/cybsec/tyae009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network games are commonly used to capture the strategic interactions among interconnected agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account the mutual dependencies connecting them, which is typically obtained by solving a set of fixed point equations. Stackelberg games, on the other hand, model the sequential moves between agents that are categorized as leaders and followers. The corresponding solution concept, the subgame perfect equilibrium, is typically obtained using backward induction. Both game forms enjoy very wide use in the (cyber)security literature, the network game often as a template to study security investment and externality—also referred to as the interdependent security games—and the Stackelberg game as a formalism to model a variety of attacker–defender scenarios. In this study, we examine a model that combines both types of strategic reasoning: the interdependency as well as sequential moves. Specifically, we consider a scenario with a network of interconnected first movers (firms or defenders, whose security efforts and practices collectively determine the security posture of the eco-system) and one or more second movers, the attacker(s), who determine how much effort to exert on attacking the many potential targets. This gives rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will examine how its existence and uniqueness conditions differ from that for a standard network game. Of particular interest are comparisons between the two game forms in terms of effort exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among the defenders.\",\"PeriodicalId\":44310,\"journal\":{\"name\":\"Journal of Cybersecurity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cybersecurity\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1093/cybsec/tyae009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cybersecurity","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1093/cybsec/tyae009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Interdependent security games in the Stackelberg style: how first-mover advantage impacts free riding and security (under-)investment
Network games are commonly used to capture the strategic interactions among interconnected agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account the mutual dependencies connecting them, which is typically obtained by solving a set of fixed point equations. Stackelberg games, on the other hand, model the sequential moves between agents that are categorized as leaders and followers. The corresponding solution concept, the subgame perfect equilibrium, is typically obtained using backward induction. Both game forms enjoy very wide use in the (cyber)security literature, the network game often as a template to study security investment and externality—also referred to as the interdependent security games—and the Stackelberg game as a formalism to model a variety of attacker–defender scenarios. In this study, we examine a model that combines both types of strategic reasoning: the interdependency as well as sequential moves. Specifically, we consider a scenario with a network of interconnected first movers (firms or defenders, whose security efforts and practices collectively determine the security posture of the eco-system) and one or more second movers, the attacker(s), who determine how much effort to exert on attacking the many potential targets. This gives rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will examine how its existence and uniqueness conditions differ from that for a standard network game. Of particular interest are comparisons between the two game forms in terms of effort exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among the defenders.
期刊介绍:
Journal of Cybersecurity provides a hub around which the interdisciplinary cybersecurity community can form. The journal is committed to providing quality empirical research, as well as scholarship, that is grounded in real-world implications and solutions. Journal of Cybersecurity solicits articles adhering to the following, broadly constructed and interpreted, aspects of cybersecurity: anthropological and cultural studies; computer science and security; security and crime science; cryptography and associated topics; security economics; human factors and psychology; legal aspects of information security; political and policy perspectives; strategy and international relations; and privacy.