使用 MXene 的透明电磁干扰屏蔽材料

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-06-24 DOI:10.1002/cey2.593
Yanli Deng, Yaqing Chen, Wei Liu, Lili Wu, Zhou Wang, Dan Xiao, Decheng Meng, Xingguo Jiang, Jiurong Liu, Zhihui Zeng, Na Wu
{"title":"使用 MXene 的透明电磁干扰屏蔽材料","authors":"Yanli Deng, Yaqing Chen, Wei Liu, Lili Wu, Zhou Wang, Dan Xiao, Decheng Meng, Xingguo Jiang, Jiurong Liu, Zhihui Zeng, Na Wu","doi":"10.1002/cey2.593","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of terahertz technologies, electromagnetic interference (EMI) shielding materials are needed to ensure secure electromagnetic environments. Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility, lightweight, mechanical robustness, and high shielding efficiency. However, the consideration of the optical properties of these shielding materials is still in its infancy. By incorporating transparency, visual information from protected systems can be preserved for monitoring interior working conditions, and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology. There are many materials that can be applied to transparent EMI shields. In particular, two-dimensional transition metal carbide/nitrides (MXenes), possessing the advantages of superior conductivity, optical properties, favorable flexibility, and facile processibility, have become a great candidate. This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way. Materials from MXenes, indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"19 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent electromagnetic interference shielding materials using MXene\",\"authors\":\"Yanli Deng, Yaqing Chen, Wei Liu, Lili Wu, Zhou Wang, Dan Xiao, Decheng Meng, Xingguo Jiang, Jiurong Liu, Zhihui Zeng, Na Wu\",\"doi\":\"10.1002/cey2.593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid advancement of terahertz technologies, electromagnetic interference (EMI) shielding materials are needed to ensure secure electromagnetic environments. Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility, lightweight, mechanical robustness, and high shielding efficiency. However, the consideration of the optical properties of these shielding materials is still in its infancy. By incorporating transparency, visual information from protected systems can be preserved for monitoring interior working conditions, and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology. There are many materials that can be applied to transparent EMI shields. In particular, two-dimensional transition metal carbide/nitrides (MXenes), possessing the advantages of superior conductivity, optical properties, favorable flexibility, and facile processibility, have become a great candidate. This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way. Materials from MXenes, indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.593\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.593","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着太赫兹技术的快速发展,需要电磁干扰(EMI)屏蔽材料来确保安全的电磁环境。为了实现高效的 EMI 屏蔽膜,人们付出了巨大的努力,以增强其柔韧性、轻量化、机械坚固性和高屏蔽效率。然而,对这些屏蔽材料光学特性的考虑仍处于起步阶段。通过加入透明性,可保留受保护系统的视觉信息,以监控内部工作条件,而且光学上的不可感知性使屏蔽材料在设备和生物体上的覆盖都不会引起反感。有许多材料可用于透明 EMI 屏蔽。其中,二维过渡金属碳化物/氮化物(MXenes)具有优异的导电性、光学特性、良好的柔韧性和易加工性等优点,已成为一个很好的候选材料。本研究全面回顾了近年来有关开发高效、光学透明 EMI 屏蔽层的研究。研究涵盖了氧化二甲烯、氧化铟锡、金属、碳和导电聚合物等材料,重点关注了基于氧化二甲烯的复合材料在透明 EMI 屏蔽中的应用。还讨论了基于 MXene 的透明 EMI 屏蔽的未来发展前景和挑战。这项工作旨在通过利用 MXene,促进高性能、光学透明 EMI 屏蔽的开发,使其得到更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transparent electromagnetic interference shielding materials using MXene

Transparent electromagnetic interference shielding materials using MXene
With the rapid advancement of terahertz technologies, electromagnetic interference (EMI) shielding materials are needed to ensure secure electromagnetic environments. Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility, lightweight, mechanical robustness, and high shielding efficiency. However, the consideration of the optical properties of these shielding materials is still in its infancy. By incorporating transparency, visual information from protected systems can be preserved for monitoring interior working conditions, and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology. There are many materials that can be applied to transparent EMI shields. In particular, two-dimensional transition metal carbide/nitrides (MXenes), possessing the advantages of superior conductivity, optical properties, favorable flexibility, and facile processibility, have become a great candidate. This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way. Materials from MXenes, indium tin oxide, metal, carbon, and conductive polymers are covered, with a focus on the employment of MXene-based composites in transparent EMI shielding. The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed. This work aims to promote the development of high-performance, optically transparent EMI shields for broader applications by leveraging MXenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信