Samantha Engwell, Larry G. Mastin, Costanza Bonadonna, Sara Barsotti, Natalia I. Deligne, Bergrun A. Oladottir
{"title":"表征、量化和获取爆炸性火山喷发的喷发源参数,以便对火山碎屑弥散进行实际模拟:当前观点和未来展望","authors":"Samantha Engwell, Larry G. Mastin, Costanza Bonadonna, Sara Barsotti, Natalia I. Deligne, Bergrun A. Oladottir","doi":"10.1007/s00445-024-01706-y","DOIUrl":null,"url":null,"abstract":"<p>Eruption source parameters (ESPs) are crucial for characterising volcanic eruptions and are essential inputs to numerical models used for hazard assessment. Key ESPs of explosive volcanic eruptions include plume height, mass eruption rate, eruption duration, and grain-size distribution. Some of these ESPs can be directly observed during an eruption, but others are difficult to measure in real-time, or indeed, accurately and precisely quantify afterwards. Estimates of ESPs for eruptions that cannot be observed, for example, due to the remote location of a volcano or poor weather conditions, are often defined using expert judgement and data from past eruptions, both from the volcano of interest and analogue volcanoes farther afield. Analysis of such information is time intensive and difficult, particularly during eruption response. These difficulties have resulted in the production of datasets to aid quick identification of ESPs prior to or during an eruption for use in operational response settings such as those at volcano observatories and Volcanic Ash Advisory Centres. These resources include the Mastin et al. (2009a) ESP dataset and the Catalogue of Icelandic Volcanoes and European Catalogue of Volcanoes aviation tables. Here, we review and compare these resources, which take different approaches to assigning ESPs. We identify future areas for development of these resources, highlighting the need for frequent updates as more knowledge of volcanic activity is gained and as modelling capabilities and requirements change.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"25 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterising, quantifying, and accessing eruption source parameters of explosive volcanic eruptions for operational simulation of tephra dispersion: a current view and future perspectives\",\"authors\":\"Samantha Engwell, Larry G. Mastin, Costanza Bonadonna, Sara Barsotti, Natalia I. Deligne, Bergrun A. Oladottir\",\"doi\":\"10.1007/s00445-024-01706-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Eruption source parameters (ESPs) are crucial for characterising volcanic eruptions and are essential inputs to numerical models used for hazard assessment. Key ESPs of explosive volcanic eruptions include plume height, mass eruption rate, eruption duration, and grain-size distribution. Some of these ESPs can be directly observed during an eruption, but others are difficult to measure in real-time, or indeed, accurately and precisely quantify afterwards. Estimates of ESPs for eruptions that cannot be observed, for example, due to the remote location of a volcano or poor weather conditions, are often defined using expert judgement and data from past eruptions, both from the volcano of interest and analogue volcanoes farther afield. Analysis of such information is time intensive and difficult, particularly during eruption response. These difficulties have resulted in the production of datasets to aid quick identification of ESPs prior to or during an eruption for use in operational response settings such as those at volcano observatories and Volcanic Ash Advisory Centres. These resources include the Mastin et al. (2009a) ESP dataset and the Catalogue of Icelandic Volcanoes and European Catalogue of Volcanoes aviation tables. Here, we review and compare these resources, which take different approaches to assigning ESPs. We identify future areas for development of these resources, highlighting the need for frequent updates as more knowledge of volcanic activity is gained and as modelling capabilities and requirements change.</p>\",\"PeriodicalId\":55297,\"journal\":{\"name\":\"Bulletin of Volcanology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Volcanology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00445-024-01706-y\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-024-01706-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterising, quantifying, and accessing eruption source parameters of explosive volcanic eruptions for operational simulation of tephra dispersion: a current view and future perspectives
Eruption source parameters (ESPs) are crucial for characterising volcanic eruptions and are essential inputs to numerical models used for hazard assessment. Key ESPs of explosive volcanic eruptions include plume height, mass eruption rate, eruption duration, and grain-size distribution. Some of these ESPs can be directly observed during an eruption, but others are difficult to measure in real-time, or indeed, accurately and precisely quantify afterwards. Estimates of ESPs for eruptions that cannot be observed, for example, due to the remote location of a volcano or poor weather conditions, are often defined using expert judgement and data from past eruptions, both from the volcano of interest and analogue volcanoes farther afield. Analysis of such information is time intensive and difficult, particularly during eruption response. These difficulties have resulted in the production of datasets to aid quick identification of ESPs prior to or during an eruption for use in operational response settings such as those at volcano observatories and Volcanic Ash Advisory Centres. These resources include the Mastin et al. (2009a) ESP dataset and the Catalogue of Icelandic Volcanoes and European Catalogue of Volcanoes aviation tables. Here, we review and compare these resources, which take different approaches to assigning ESPs. We identify future areas for development of these resources, highlighting the need for frequent updates as more knowledge of volcanic activity is gained and as modelling capabilities and requirements change.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.