{"title":"SEOE:基于选项图的产前抑郁症语义嵌入检测方法","authors":"Xiaosong Han, Mengchen Cao, Dong Xu, Xiaoyue Feng, Yanchun Liang, Xiaoduo Lang, Renchu Guan","doi":"10.1007/s11704-024-3612-4","DOIUrl":null,"url":null,"abstract":"<p>Prenatal depression, which can affect pregnant women’s physical and psychological health and cause postpartum depression, is increasing dramatically. Therefore, it is essential to detect prenatal depression early and conduct an attribution analysis. Many studies have used questionnaires to screen for prenatal depression, but the existing methods lack attributability. To diagnose the early signs of prenatal depression and identify the key factors that may lead to prenatal depression from questionnaires, we present the semantically enhanced option embedding (SEOE) model to represent questionnaire options. It can quantitatively determine the relationship and patterns between options and depression. SEOE first quantifies options and resorts them, gathering options with little difference, since Word2Vec is highly dependent on context. The resort task is transformed into an optimization problem involving the traveling salesman problem. Moreover, all questionnaire samples are used to train the options’ vector using Word2Vec. Finally, an LSTM and GRU fused model incorporating the cycle learning rate is constructed to detect whether a pregnant woman is suffering from depression. To verify the model, we compare it with other deep learning and traditional machine learning methods. The experiment results show that our proposed model can accurately identify pregnant women with depression and reach an F1 score of 0.8. The most relevant factors of depression found by SEOE are also verified in the literature. In addition, our model is of low computational complexity and strong generalization, which can be widely applied to other questionnaire analyses of psychiatric disorders.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"3 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEOE: an option graph based semantically embedding method for prenatal depression detection\",\"authors\":\"Xiaosong Han, Mengchen Cao, Dong Xu, Xiaoyue Feng, Yanchun Liang, Xiaoduo Lang, Renchu Guan\",\"doi\":\"10.1007/s11704-024-3612-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prenatal depression, which can affect pregnant women’s physical and psychological health and cause postpartum depression, is increasing dramatically. Therefore, it is essential to detect prenatal depression early and conduct an attribution analysis. Many studies have used questionnaires to screen for prenatal depression, but the existing methods lack attributability. To diagnose the early signs of prenatal depression and identify the key factors that may lead to prenatal depression from questionnaires, we present the semantically enhanced option embedding (SEOE) model to represent questionnaire options. It can quantitatively determine the relationship and patterns between options and depression. SEOE first quantifies options and resorts them, gathering options with little difference, since Word2Vec is highly dependent on context. The resort task is transformed into an optimization problem involving the traveling salesman problem. Moreover, all questionnaire samples are used to train the options’ vector using Word2Vec. Finally, an LSTM and GRU fused model incorporating the cycle learning rate is constructed to detect whether a pregnant woman is suffering from depression. To verify the model, we compare it with other deep learning and traditional machine learning methods. The experiment results show that our proposed model can accurately identify pregnant women with depression and reach an F1 score of 0.8. The most relevant factors of depression found by SEOE are also verified in the literature. In addition, our model is of low computational complexity and strong generalization, which can be widely applied to other questionnaire analyses of psychiatric disorders.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-024-3612-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-024-3612-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
SEOE: an option graph based semantically embedding method for prenatal depression detection
Prenatal depression, which can affect pregnant women’s physical and psychological health and cause postpartum depression, is increasing dramatically. Therefore, it is essential to detect prenatal depression early and conduct an attribution analysis. Many studies have used questionnaires to screen for prenatal depression, but the existing methods lack attributability. To diagnose the early signs of prenatal depression and identify the key factors that may lead to prenatal depression from questionnaires, we present the semantically enhanced option embedding (SEOE) model to represent questionnaire options. It can quantitatively determine the relationship and patterns between options and depression. SEOE first quantifies options and resorts them, gathering options with little difference, since Word2Vec is highly dependent on context. The resort task is transformed into an optimization problem involving the traveling salesman problem. Moreover, all questionnaire samples are used to train the options’ vector using Word2Vec. Finally, an LSTM and GRU fused model incorporating the cycle learning rate is constructed to detect whether a pregnant woman is suffering from depression. To verify the model, we compare it with other deep learning and traditional machine learning methods. The experiment results show that our proposed model can accurately identify pregnant women with depression and reach an F1 score of 0.8. The most relevant factors of depression found by SEOE are also verified in the literature. In addition, our model is of low computational complexity and strong generalization, which can be widely applied to other questionnaire analyses of psychiatric disorders.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.