{"title":"渤海次生微地震的特征及其对地震噪声的影响","authors":"Kang-Da Yin, Xiao-Gang Zhang, Xiao-Jun Li, Guo-Liang Mao, Xing-Xing Zhang, Xiao-Hui Jia","doi":"10.1007/s11770-024-1113-8","DOIUrl":null,"url":null,"abstract":"<p>In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation data from 33 broadband seismic stations during strong gust periods, and new perspectives are proposed on the generation mechanisms of secondary microseisms. The results show that short-period double-frequency (SPDF) and long-period double-frequency (LPDF) microseisms exhibit significant alternating trends of strengthening and weakening in the northwest area of the Bohai Sea. SPDF microseisms are generated by irregular wind waves during strong offshore wind periods, with a broad frequency band distributed in the range of 0.2–1 Hz; LPDF microseisms are generated by regular swells during periods of sea wind weakening, with a narrow frequency band concentrated between 0.15 and 0.3 Hz. In terms of temporal dimensions, as the sea wind weakens, the energy of SPDF microseisms weakens, and the dominant frequencies increase, whereas the energy of LPDF microseisms strengthens and the dominant frequencies decrease, which is consistent with the process of the decay of wind waves and the growth of swells. In terms of spatial dimensions, as the microseisms propagate inland areas, the advantageous frequency band and energy of SPDF microseisms are reduced and significantly attenuated, respectively, whereas LPDF microseisms show no significant changes. And during the propagation process in high-elevation areas, LPDF microseisms exhibit a certain site amplification effect when the energy is strong. The results provide important supplements to the basic theory of secondary microseisms, preliminarily reveal the relationship between the atmosphere, ocean, and seismic noise, and provide important theoretical references for conducting geological and oceanographic research based on the characteristics of secondary microseisms.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of secondary microseisms generated in the Bohai Sea and their impact on seismic noise\",\"authors\":\"Kang-Da Yin, Xiao-Gang Zhang, Xiao-Jun Li, Guo-Liang Mao, Xing-Xing Zhang, Xiao-Hui Jia\",\"doi\":\"10.1007/s11770-024-1113-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation data from 33 broadband seismic stations during strong gust periods, and new perspectives are proposed on the generation mechanisms of secondary microseisms. The results show that short-period double-frequency (SPDF) and long-period double-frequency (LPDF) microseisms exhibit significant alternating trends of strengthening and weakening in the northwest area of the Bohai Sea. SPDF microseisms are generated by irregular wind waves during strong offshore wind periods, with a broad frequency band distributed in the range of 0.2–1 Hz; LPDF microseisms are generated by regular swells during periods of sea wind weakening, with a narrow frequency band concentrated between 0.15 and 0.3 Hz. In terms of temporal dimensions, as the sea wind weakens, the energy of SPDF microseisms weakens, and the dominant frequencies increase, whereas the energy of LPDF microseisms strengthens and the dominant frequencies decrease, which is consistent with the process of the decay of wind waves and the growth of swells. In terms of spatial dimensions, as the microseisms propagate inland areas, the advantageous frequency band and energy of SPDF microseisms are reduced and significantly attenuated, respectively, whereas LPDF microseisms show no significant changes. And during the propagation process in high-elevation areas, LPDF microseisms exhibit a certain site amplification effect when the energy is strong. The results provide important supplements to the basic theory of secondary microseisms, preliminarily reveal the relationship between the atmosphere, ocean, and seismic noise, and provide important theoretical references for conducting geological and oceanographic research based on the characteristics of secondary microseisms.</p>\",\"PeriodicalId\":55500,\"journal\":{\"name\":\"Applied Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11770-024-1113-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-024-1113-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Characteristics of secondary microseisms generated in the Bohai Sea and their impact on seismic noise
In this study, we use the Bohai Sea area as an example to investigate the characteristics of secondary microseisms and their impact on seismic noise based on the temporal frequency spectral analysis of observation data from 33 broadband seismic stations during strong gust periods, and new perspectives are proposed on the generation mechanisms of secondary microseisms. The results show that short-period double-frequency (SPDF) and long-period double-frequency (LPDF) microseisms exhibit significant alternating trends of strengthening and weakening in the northwest area of the Bohai Sea. SPDF microseisms are generated by irregular wind waves during strong offshore wind periods, with a broad frequency band distributed in the range of 0.2–1 Hz; LPDF microseisms are generated by regular swells during periods of sea wind weakening, with a narrow frequency band concentrated between 0.15 and 0.3 Hz. In terms of temporal dimensions, as the sea wind weakens, the energy of SPDF microseisms weakens, and the dominant frequencies increase, whereas the energy of LPDF microseisms strengthens and the dominant frequencies decrease, which is consistent with the process of the decay of wind waves and the growth of swells. In terms of spatial dimensions, as the microseisms propagate inland areas, the advantageous frequency band and energy of SPDF microseisms are reduced and significantly attenuated, respectively, whereas LPDF microseisms show no significant changes. And during the propagation process in high-elevation areas, LPDF microseisms exhibit a certain site amplification effect when the energy is strong. The results provide important supplements to the basic theory of secondary microseisms, preliminarily reveal the relationship between the atmosphere, ocean, and seismic noise, and provide important theoretical references for conducting geological and oceanographic research based on the characteristics of secondary microseisms.
期刊介绍:
The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists.
The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.