{"title":"具有可调谐拉曼耦合的自旋张量-量子耦合玻色-爱因斯坦凝聚态中的矢量明亮孤子动力学","authors":"Ya-Jun Wang, Yan-Li Guo, Xue-Ying Yang, Xiao-Fei Zhang","doi":"10.1007/s10909-024-03163-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the stabilities and dynamical properties of solitons in one-dimensional spin-tensor-momentum-coupled Bose–Einstein condensates with periodical tunable Raman coupling by numerical simulating and variational approximating the time-dependent Gross–Pitaevskii equations. Our results show for a trapless system, the dynamically stabilized bright solitons can be formed by modulating Raman coupling with the initial state of polar soliton, and its evolution and movement show consistence with analytical prediction. The effects of oscillating frequency of Raman coupling are also investigated. In addition, the evolution of amplitudes of such solitons exhibits nontrivial mode with combination of two oscillations, which is different with the case of fixed Raman coupling. The periodically-modulating Raman coupling provides a new mechanism to stabilize the solitons in spin-tensor-momentum-coupled Bose–Einstein condensates, which would be beneficial for the potential study of soliton dynamics in experiment.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 5-6","pages":"722 - 732"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Vector Bright Solitons in Spin-Tensor-Momentum-Coupled Bose–Einstein Condensates with Tunable Raman Coupling\",\"authors\":\"Ya-Jun Wang, Yan-Li Guo, Xue-Ying Yang, Xiao-Fei Zhang\",\"doi\":\"10.1007/s10909-024-03163-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the stabilities and dynamical properties of solitons in one-dimensional spin-tensor-momentum-coupled Bose–Einstein condensates with periodical tunable Raman coupling by numerical simulating and variational approximating the time-dependent Gross–Pitaevskii equations. Our results show for a trapless system, the dynamically stabilized bright solitons can be formed by modulating Raman coupling with the initial state of polar soliton, and its evolution and movement show consistence with analytical prediction. The effects of oscillating frequency of Raman coupling are also investigated. In addition, the evolution of amplitudes of such solitons exhibits nontrivial mode with combination of two oscillations, which is different with the case of fixed Raman coupling. The periodically-modulating Raman coupling provides a new mechanism to stabilize the solitons in spin-tensor-momentum-coupled Bose–Einstein condensates, which would be beneficial for the potential study of soliton dynamics in experiment.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"216 5-6\",\"pages\":\"722 - 732\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-024-03163-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03163-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Dynamics of Vector Bright Solitons in Spin-Tensor-Momentum-Coupled Bose–Einstein Condensates with Tunable Raman Coupling
We consider the stabilities and dynamical properties of solitons in one-dimensional spin-tensor-momentum-coupled Bose–Einstein condensates with periodical tunable Raman coupling by numerical simulating and variational approximating the time-dependent Gross–Pitaevskii equations. Our results show for a trapless system, the dynamically stabilized bright solitons can be formed by modulating Raman coupling with the initial state of polar soliton, and its evolution and movement show consistence with analytical prediction. The effects of oscillating frequency of Raman coupling are also investigated. In addition, the evolution of amplitudes of such solitons exhibits nontrivial mode with combination of two oscillations, which is different with the case of fixed Raman coupling. The periodically-modulating Raman coupling provides a new mechanism to stabilize the solitons in spin-tensor-momentum-coupled Bose–Einstein condensates, which would be beneficial for the potential study of soliton dynamics in experiment.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.