{"title":"大规范组合中石墨烯吸附氦气过程中基底波纹的影响","authors":"Gage Erwin, Adrian Del Maestro","doi":"10.1007/s10909-024-03156-4","DOIUrl":null,"url":null,"abstract":"<div><p>Adsorption of <span>\\({}^4\\)</span>He on graphene substrates has been a topic of great interest due to the intriguing effects of graphene corrugation on the manifestation of commensurate solid and exotic phases in low-dimensional systems. In this study, we employ worm algorithm quantum Monte Carlo to study helium adsorbed on a graphene substrate to explore corrugation effects in the grand canonical ensemble. We utilized a Szalewicz potential for helium–helium interactions and a summation of isotropic interactions between helium and carbon atoms to construct a helium–graphene potential. We implement different levels of approximation to achieve a smooth potential, three partially corrugated potentials, and a fully ab initio potential to test the effects of corrugation on the first and second layers. We demonstrate that the omission of corrugation within the helium–graphene potential could lead to finite-size effects in both the first and second layers. Thus, a fully corrugated potential should be used when simulating helium in this low-dimensional regime.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"215 5-6","pages":"525 - 540"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Substrate Corrugation During Helium Adsorption on Graphene in the Grand Canonical Ensemble\",\"authors\":\"Gage Erwin, Adrian Del Maestro\",\"doi\":\"10.1007/s10909-024-03156-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adsorption of <span>\\\\({}^4\\\\)</span>He on graphene substrates has been a topic of great interest due to the intriguing effects of graphene corrugation on the manifestation of commensurate solid and exotic phases in low-dimensional systems. In this study, we employ worm algorithm quantum Monte Carlo to study helium adsorbed on a graphene substrate to explore corrugation effects in the grand canonical ensemble. We utilized a Szalewicz potential for helium–helium interactions and a summation of isotropic interactions between helium and carbon atoms to construct a helium–graphene potential. We implement different levels of approximation to achieve a smooth potential, three partially corrugated potentials, and a fully ab initio potential to test the effects of corrugation on the first and second layers. We demonstrate that the omission of corrugation within the helium–graphene potential could lead to finite-size effects in both the first and second layers. Thus, a fully corrugated potential should be used when simulating helium in this low-dimensional regime.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"215 5-6\",\"pages\":\"525 - 540\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-024-03156-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03156-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Effects of Substrate Corrugation During Helium Adsorption on Graphene in the Grand Canonical Ensemble
Adsorption of \({}^4\)He on graphene substrates has been a topic of great interest due to the intriguing effects of graphene corrugation on the manifestation of commensurate solid and exotic phases in low-dimensional systems. In this study, we employ worm algorithm quantum Monte Carlo to study helium adsorbed on a graphene substrate to explore corrugation effects in the grand canonical ensemble. We utilized a Szalewicz potential for helium–helium interactions and a summation of isotropic interactions between helium and carbon atoms to construct a helium–graphene potential. We implement different levels of approximation to achieve a smooth potential, three partially corrugated potentials, and a fully ab initio potential to test the effects of corrugation on the first and second layers. We demonstrate that the omission of corrugation within the helium–graphene potential could lead to finite-size effects in both the first and second layers. Thus, a fully corrugated potential should be used when simulating helium in this low-dimensional regime.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.