素数哥白兰-厄尔多常数

IF 0.6 3区 数学 Q3 MATHEMATICS
J. M. Campbell
{"title":"素数哥白兰-厄尔多常数","authors":"J. M. Campbell","doi":"10.1007/s10474-024-01437-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((a(n) : n \\in \\mathbb{N})\\)</span> denote a sequence of nonnegative integers. Let <span>\\(0.a(1)a(2) \\ldots \\)</span> denote the real number obtained by concatenating the digit expansions, in a fixed base, of consecutive entries of <span>\\((a(n) : n \\in \\mathbb{N})\\)</span>. Research on digit expansions of this form has mainly to do with the normality of <span>\\(0.a(1)a(2) \\ldots \\)</span> for a given base. Famously, the Copeland-Erdős constant <span>\\(0.2357111317 \\ldots {}\\)</span>, for the case whereby <span>\\(a(n)\\)</span> equals the <span>\\(n^{\\text{th}}\\)</span> prime number <span>\\(p_{n}\\)</span>, is normal in base 10. However, it seems that the “inverse” construction given by concatenating the decimal digits of <span>\\((\\pi(n) : n \\in \\mathbb{N})\\)</span>, where <span>\\(\\pi\\)</span> denotes the prime-counting function, has not previously been considered. Exploring the distribution of sequences of digits in this new constant <span>\\(0.0122 \\ldots 9101011 \\ldots \\)</span> would be comparatively difficult, since the number of times a fixed <span>\\(m \\in \\mathbb{N} \\)</span> appears in <span>\\((\\pi(n) : n \\in \\mathbb{N})\\)</span> is equal to the prime gap <span>\\(g_{m} = p_{m+1} - p_{m}\\)</span>, with the behaviour of prime gaps notoriously elusive. Using a combinatorial method due to Szüsz and Volkmann, we prove that Cramér’s conjecture on prime gaps implies the normality of <span>\\(0.a(1)a(2) \\ldots \\)</span> in a given base <span>\\(g \\geq 2\\)</span>, for <span>\\(a(n) = \\pi(n)\\)</span>.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 1","pages":"101 - 111"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The prime-counting Copeland–Erdős constant\",\"authors\":\"J. M. Campbell\",\"doi\":\"10.1007/s10474-024-01437-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\((a(n) : n \\\\in \\\\mathbb{N})\\\\)</span> denote a sequence of nonnegative integers. Let <span>\\\\(0.a(1)a(2) \\\\ldots \\\\)</span> denote the real number obtained by concatenating the digit expansions, in a fixed base, of consecutive entries of <span>\\\\((a(n) : n \\\\in \\\\mathbb{N})\\\\)</span>. Research on digit expansions of this form has mainly to do with the normality of <span>\\\\(0.a(1)a(2) \\\\ldots \\\\)</span> for a given base. Famously, the Copeland-Erdős constant <span>\\\\(0.2357111317 \\\\ldots {}\\\\)</span>, for the case whereby <span>\\\\(a(n)\\\\)</span> equals the <span>\\\\(n^{\\\\text{th}}\\\\)</span> prime number <span>\\\\(p_{n}\\\\)</span>, is normal in base 10. However, it seems that the “inverse” construction given by concatenating the decimal digits of <span>\\\\((\\\\pi(n) : n \\\\in \\\\mathbb{N})\\\\)</span>, where <span>\\\\(\\\\pi\\\\)</span> denotes the prime-counting function, has not previously been considered. Exploring the distribution of sequences of digits in this new constant <span>\\\\(0.0122 \\\\ldots 9101011 \\\\ldots \\\\)</span> would be comparatively difficult, since the number of times a fixed <span>\\\\(m \\\\in \\\\mathbb{N} \\\\)</span> appears in <span>\\\\((\\\\pi(n) : n \\\\in \\\\mathbb{N})\\\\)</span> is equal to the prime gap <span>\\\\(g_{m} = p_{m+1} - p_{m}\\\\)</span>, with the behaviour of prime gaps notoriously elusive. Using a combinatorial method due to Szüsz and Volkmann, we prove that Cramér’s conjecture on prime gaps implies the normality of <span>\\\\(0.a(1)a(2) \\\\ldots \\\\)</span> in a given base <span>\\\\(g \\\\geq 2\\\\)</span>, for <span>\\\\(a(n) = \\\\pi(n)\\\\)</span>.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"173 1\",\"pages\":\"101 - 111\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01437-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01437-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \((a(n) : n \in \mathbb{N})\) 表示一个非负整数序列。让 \(0.a(1)a(2) \ldots \) 表示把 \((a(n) : n \in \mathbb{N})\)的连续项的数位展开数以固定基数连接起来得到的实数。关于这种形式的位数展开的研究主要与给定基数下的(0.a(1)a(2) \ldots \)的规范性有关。著名的是,对于 \(a(n)\ 等于 \(n^{text{th}}\) 质数 \(p_{n}\) 的情况,科普兰-埃尔德常数 \(0.2357111317 \ldots {}\)在基数为 10 时是正常的。然而,将 \((\pi(n) : n \in \mathbb{N})\)的十进制数(其中 \(\pi\)表示质数计数函数)串联起来所给出的 "逆 "构造似乎还没有被考虑过。探索这个新常数 \(0.0122 \ldots 9101011 \ldots \)中出现固定的 \(m \in \mathbb{N} \)的次数等于素数差距 \(g_{m}=p_{m+1}-p_{m}\),而素数差距的行为是众所周知的难以捉摸。通过使用 Szüsz 和 Volkmann 的组合方法,我们证明了克拉梅尔关于素数差距的猜想意味着在给定的基\(g \geq 2\) 中,对于 \(a(n) = \pi(n)\) ,\(0.a(1)a(2) \ldots \)的正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The prime-counting Copeland–Erdős constant

Let \((a(n) : n \in \mathbb{N})\) denote a sequence of nonnegative integers. Let \(0.a(1)a(2) \ldots \) denote the real number obtained by concatenating the digit expansions, in a fixed base, of consecutive entries of \((a(n) : n \in \mathbb{N})\). Research on digit expansions of this form has mainly to do with the normality of \(0.a(1)a(2) \ldots \) for a given base. Famously, the Copeland-Erdős constant \(0.2357111317 \ldots {}\), for the case whereby \(a(n)\) equals the \(n^{\text{th}}\) prime number \(p_{n}\), is normal in base 10. However, it seems that the “inverse” construction given by concatenating the decimal digits of \((\pi(n) : n \in \mathbb{N})\), where \(\pi\) denotes the prime-counting function, has not previously been considered. Exploring the distribution of sequences of digits in this new constant \(0.0122 \ldots 9101011 \ldots \) would be comparatively difficult, since the number of times a fixed \(m \in \mathbb{N} \) appears in \((\pi(n) : n \in \mathbb{N})\) is equal to the prime gap \(g_{m} = p_{m+1} - p_{m}\), with the behaviour of prime gaps notoriously elusive. Using a combinatorial method due to Szüsz and Volkmann, we prove that Cramér’s conjecture on prime gaps implies the normality of \(0.a(1)a(2) \ldots \) in a given base \(g \geq 2\), for \(a(n) = \pi(n)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信