正电子的实验用途和生物应用潜力

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
A. Hourlier;F. Boisson;D. Brasse
{"title":"正电子的实验用途和生物应用潜力","authors":"A. Hourlier;F. Boisson;D. Brasse","doi":"10.1109/TRPMS.2024.3407981","DOIUrl":null,"url":null,"abstract":"Positrons are widely used in molecular imaging through the positron emission tomography (PET) imaging technique. However PET only reconstruct the distribution of the positron emitting radioisotopes, and because the \n<inline-formula> <tex-math>$\\beta ^{+}$ </tex-math></inline-formula>\n isotopes are linked to a vector molecule, the distribution of \n<inline-formula> <tex-math>$\\beta ^{+}$ </tex-math></inline-formula>\n isotopes is correlated to the distribution of a given biological function. Positron-electron annihilation can transit through a meta-stable called positronium, which can exist in two spin states: 1) the single state—parapositronium and 2) the triplet state—orthopositronium. The orthopositronium lifetime \n<inline-formula> <tex-math>$(\\tau _{\\mathrm {oPs}})$ </tex-math></inline-formula>\n, formation probabilities and decay modes are sensitive to the physical and chemical state of the neighboring medium and could therefore provide information on the tissues themselves during a PET acquisition. However, traditional PET only relies on the detection of the two annihilation photons, therefore the lifetime and annihilation higher-multiplicity annihilations are not accessible to such PET paradigm. This review will present some of the use cases of positronium as a specific signature for event selection in astrophysics and particle physics, and as a probe for the microscopic state of materials and tissues. These usages of positronium highlight the interest for positronium for diagnostic in medical science, the projects for using positronium in upcoming PET tomographs are then presented.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"581-594"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543075","citationCount":"0","resultStr":"{\"title\":\"Experimental Uses of Positronium and Potential for Biological Applications\",\"authors\":\"A. Hourlier;F. Boisson;D. Brasse\",\"doi\":\"10.1109/TRPMS.2024.3407981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positrons are widely used in molecular imaging through the positron emission tomography (PET) imaging technique. However PET only reconstruct the distribution of the positron emitting radioisotopes, and because the \\n<inline-formula> <tex-math>$\\\\beta ^{+}$ </tex-math></inline-formula>\\n isotopes are linked to a vector molecule, the distribution of \\n<inline-formula> <tex-math>$\\\\beta ^{+}$ </tex-math></inline-formula>\\n isotopes is correlated to the distribution of a given biological function. Positron-electron annihilation can transit through a meta-stable called positronium, which can exist in two spin states: 1) the single state—parapositronium and 2) the triplet state—orthopositronium. The orthopositronium lifetime \\n<inline-formula> <tex-math>$(\\\\tau _{\\\\mathrm {oPs}})$ </tex-math></inline-formula>\\n, formation probabilities and decay modes are sensitive to the physical and chemical state of the neighboring medium and could therefore provide information on the tissues themselves during a PET acquisition. However, traditional PET only relies on the detection of the two annihilation photons, therefore the lifetime and annihilation higher-multiplicity annihilations are not accessible to such PET paradigm. This review will present some of the use cases of positronium as a specific signature for event selection in astrophysics and particle physics, and as a probe for the microscopic state of materials and tissues. These usages of positronium highlight the interest for positronium for diagnostic in medical science, the projects for using positronium in upcoming PET tomographs are then presented.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"8 6\",\"pages\":\"581-594\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10543075/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10543075/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

正电子通过正电子发射断层扫描(PET)成像技术广泛应用于分子成像。然而,PET 只能重建正电子发射放射性同位素的分布,由于 $\beta ^{+}$同位素与矢量分子相连,因此 $\beta ^{+}$同位素的分布与特定生物功能的分布相关。正电子-电子湮灭可以通过一种叫做正电子的元稳态,它可以以两种自旋态存在:1) 单态-正电子鎓(parapositronium)和 2) 三重态-正电子鎓(orthopositronium)。正电子寿命$(\tau _\mathrm {oPs}})$、形成概率和衰变模式对邻近介质的物理和化学状态非常敏感,因此可以在 PET 采集过程中提供有关组织本身的信息。然而,传统的正电子发射计算机只能检测到两个湮灭光子,因此这种正电子发射计算机范例无法获得寿命和湮灭的高倍率湮灭。本综述将介绍正电子作为天体物理学和粒子物理学事件选择的特定特征,以及作为材料和组织微观状态探针的一些应用案例。正氚的这些用途凸显了正氚在医学诊断中的重要性,随后将介绍在即将推出的正电子发射计算机断层成像仪中使用正氚的项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Uses of Positronium and Potential for Biological Applications
Positrons are widely used in molecular imaging through the positron emission tomography (PET) imaging technique. However PET only reconstruct the distribution of the positron emitting radioisotopes, and because the $\beta ^{+}$ isotopes are linked to a vector molecule, the distribution of $\beta ^{+}$ isotopes is correlated to the distribution of a given biological function. Positron-electron annihilation can transit through a meta-stable called positronium, which can exist in two spin states: 1) the single state—parapositronium and 2) the triplet state—orthopositronium. The orthopositronium lifetime $(\tau _{\mathrm {oPs}})$ , formation probabilities and decay modes are sensitive to the physical and chemical state of the neighboring medium and could therefore provide information on the tissues themselves during a PET acquisition. However, traditional PET only relies on the detection of the two annihilation photons, therefore the lifetime and annihilation higher-multiplicity annihilations are not accessible to such PET paradigm. This review will present some of the use cases of positronium as a specific signature for event selection in astrophysics and particle physics, and as a probe for the microscopic state of materials and tissues. These usages of positronium highlight the interest for positronium for diagnostic in medical science, the projects for using positronium in upcoming PET tomographs are then presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信